
MEASURING AND EXTENDING LR(1) PARSER GENERATION

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE
UNIVERSITY OF HAWAI‘I IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMPUTER SCIENCE

AUGUST 2009

By
Xin Chen

Dissertation Committee:

David Pager, Chairperson
YingFei Dong

David Chin
David Streveler
Scott Robertson

We certify that we have read this dissertation and that, in our opinion, it is

satisfactory in scope and quality as a dissertation for the degree of Doctor

of Philosophy in Computer Science.

DISSERTATION COMMITTEE

Chairperson

ii

Copyright 2009

by

Xin Chen

iii

To my family

iv

Acknowledgements

I wish to thank my family for their love and support.

I thank my advisor, professor David Pager, for his guidance and supervision. Without him this

work would not be possible. Every time when I was stuck at an issue, it was the discussion with

him that could lead me through the difficulty.

I thank my PhD committee members for giving me feedback on my work, as well as occasional

talks and suggestions. I would regret the unfortunate pass away of professor Art Lew and miss his

passion and dedication on research.

I would like to thank many people in the compiler and parser generator field that I have commu-

nicated to in person, by email or via online discussion. From them I received invaluable suggestions

and have learned a lot: Francois Pottier, Akim Demaille, Paul Hilfinger, Joel Denny, Paul Mann,

Chris Clark, Hans Aberg, Hans-Peter Diettrich, Terence Parr, Sean O’Connor, Vladimir Makarov,

Aho Alfred, Heng Yuan, Felipe Angriman, Pete Jinks and more.

I would like to thank my GA supervisor Shi-Jen He for allowing me more freedom to concen-

trate on research in the final phase.

Thanks also go to people not mentioned here but who have nevertheless supported my work in

one way or another.

v

ABSTRACT

Commonly used parser generation algorithms such as LALR, LL and SLR all have their restric-

tions. The canonical LR(1) algorithm proposed by Knuth in 1965 is regarded as the most powerful

parser generation algorithm for context-free languages, but is very expensive in time and space costs

and has long been considered as impractical by the community. There have been LR(1) algorithms

that can improve the time and space efficiency of the canonical LR(1) algorithm, but there had been

no systematic study of them. Good LR(1) parser generator implementation is also rare. LR(k)

parser generation is even more expensive and complicated than LR(1), but it can be an alternative

to GLR in natural language processing and other applications.

To solve these problems, this work explored ways of improving data structure and algorithms,

and implemented an efficient, practical and Yacc-compatible LR(0)/LALR(1)/LR(1)/LR(k) parser

generator Hyacc, which has been released to the open source community. An empirical study was

conducted comparing different LR(1) parser generation algorithms and with LALR(1) algorithms.

The result shows that LR(1) parser generation based upon improved algorithms and carefully se-

lected data structures can be sufficiently efficient to be of practical use with modern computing

facilities. An extension was made to the unit production elimination algorithm to remove redundant

states. A LALR(1) implementation based on the first phase of lane-tracing was done, which is an-

other alternative of LALR(1) algorithm. The second phase of lane-tracing algorithm, which has not

been discussed in detail before, was analyzed and implemented. A new LR(k) algorithm called the

edge-pushing algorithm, which is based on recursively applying the lane-tracing process, was de-

signed and implemented. Finally, a latex2gDPS compiler was created using Hyacc to demonstrate

its usage.

vi

Contents

Acknowledgements v

Abstract vi

List of Tables xii

List of Figures xiv

1 Introduction 1

2 Background and Related Work 4

2.1 Parsing Theory . 4

2.1.1 History of Research on Parsing Algorithms 4

2.1.2 Classification of Parsing Algorithms . 5

2.2 LR(1) Parsing Theory . 8

2.2.1 The Canonical LR(k) Algorithm of Knuth (1965) 8

2.2.2 The Partitioning Algorithm of Korenjak (1969) 8

2.2.3 The Lane-tracing Algorithm of Pager (1977) 9

2.2.4 The Practical General Method of Pager (1977) 9

2.2.5 The Splitting Algorithm of Spector (1981, 1988) 10

2.2.6 The Honalee Algorithm of Tribble (2002) 10

2.2.7 Other LR(1) Algorithms . 11

2.3 LR(1) Parser Generators . 11

vii

2.3.1 LR(1) Parser Generators Based on the Practical General Method 11

2.3.2 LR(1) Parser Generators Based on the Lane-Tracing Algorithm 12

2.3.3 LR(1) Parser Generators Based on Spector’s Splitting Algorithm 13

2.3.4 Other LR(1) Parser Generators . 13

2.4 The Need For Revisiting LR(1) Parser Generation 14

2.4.1 The Problems of Other Parsing Algorithms 14

2.4.2 The Obsolete Misconception of LR(1) versus LALR(1) 14

2.4.3 The Current Status of LR(1) Parser Generators 15

2.5 LR(k) Parsing . 15

2.6 Conclusion . 17

3 The Hyacc Parser Generator 18

3.1 Overview . 18

3.2 Architecture of the Hyacc parser generator . 21

3.3 Architecture of the LR(1) Parse Engine . 23

3.3.1 Architecture . 23

3.3.2 Storing the Parsing Table . 25

3.3.3 Handling Precedence and Associativity 33

3.3.4 Error Handling . 35

3.4 Data Structures . 35

4 LR(1) Parser Generation 38

4.1 Overview . 38

4.2 Knuth’s Canonical Algorithm . 39

4.2.1 The Algorithm . 39

4.2.2 Implementation Issues . 41

4.3 Pager’s Practical General Method . 50

4.3.1 The Algorithm . 50

4.3.2 Implementation Issues . 52

viii

4.4 Pager’s Unit Production Elimination Algorithm 56

4.4.1 The Algorithm . 56

4.4.2 Implementation Issues . 59

4.5 Extension To The Unit Production Elimination Algorithm 66

4.5.1 Introduction and the Algorithm . 66

4.5.2 Implementation Issues . 71

4.6 Pager’s Lane-tracing Algorithm . 72

4.6.1 The Algorithm . 72

4.6.2 Lane-tracing Phase 1 . 73

4.6.3 Lane-tracing Phase 2 . 76

4.6.4 Lane-tracing Phase 2 First Step: Get Lanehead State List 76

4.6.5 Lane-tracing Phase 2 Based on PGM . 79

4.6.6 Lane-tracing Phase 2 Based on A Lane-tracing Table 83

4.7 Framework of Reduced-Space LR(1) Parser Generation 94

4.8 Conclusion . 95

5 Measurements and Evaluations of LR(1) Parser Generation 97

5.1 About the Measurement . 97

5.1.1 The Environment and Metrics Collection 97

5.1.2 The Algorithms . 98

5.1.3 The Grammars . 99

5.2 LR(1), LALR(1) and LR(0) Algorithms . 100

5.2.1 Parsing Table Size Comparison . 100

5.2.2 Parsing Table Conflict Comparison . 103

5.2.3 Running Time Comparison . 105

5.2.4 Memory Usage Comparison . 107

5.3 Extension Algorithm to Unit Production Elimination 109

5.3.1 Parsing Table Size Comparison . 109

ix

5.3.2 Parsing Table Conflict Comparison . 112

5.3.3 Running Time Comparison . 114

5.3.4 Memory Usage Comparison . 114

5.4 Comparison with Other Parser Generators . 118

5.4.1 Comparison to Dragon and Parsing . 118

5.4.2 Comparison to Menhir and MSTA . 119

5.5 Conclusion . 121

5.5.1 LR(1) and LALR(1) Algorithms . 121

5.5.2 The Unit Production Elimination Algorithm and Its Extension Algorithm . 122

5.5.3 Hyacc and Other Parser Generators . 122

6 LR(k) Parser Generation 124

6.1 LR(k) Algorithm . 125

6.1.1 LR(k) Parser Generation Based on Recursive Lane-tracing 125

6.1.2 Edge-pushing Algorithm: A Conceptual Example 128

6.1.3 The Edge-pushing Algorithm . 133

6.1.4 Edge-pushing Algorithm on Cycle Condition 135

6.2 Computation of theads(α, k) . 137

6.2.1 The Problem . 137

6.2.2 Literature Review on theads(α, k) Calculation 139

6.2.3 The theads(α, k) Algorithm Used in Hyacc 141

6.3 Storage of LR(k) Parsing Table . 145

6.4 LR(k) Parse Engine . 148

6.5 Performance . 149

6.6 Examples . 150

6.7 Lane-tracing at Compile Time . 164

6.8 More Issues . 166

7 The Latex2gDPS compiler 171

x

7.1 Introduction . 171

7.2 Design of the Latex2gDPS Compiler . 172

7.2.1 Overall Design . 172

7.2.2 Data Structures . 173

7.2.3 Use of Special Declarations . 174

7.3 Current Status . 175

7.4 An Example . 177

8 Conclusion 179

9 Future Work 181

9.1 Study of More LR(1) Algorithms . 181

9.2 Issues in LR(k) Parser Generation . 181

9.3 Ambiguity . 182

9.4 More Work on Hyacc . 182

A Hyacc User Manual 183

B Simple Grammars Used for Testing 203

C Latex2gDPS Compiler Grammar 208

Bibliography 212

xi

List of Tables

2.1 Classification of Parsing Algorithms . 6

3.1 Storage tables for the parsing machine in Hyacc parse engine 27

3.2 Parsing table for grammar G3.1 . 28

3.3 Storage tables in y.tab.c for grammar G3.1 . 29

4.1 The ratio 4 ∗ (n/m)2 for some grammars . 42

4.2 Grammar G4.4: lane table constructed in lane-tracing 86

5.1 Number of terminals, non-terminals and rules in the grammars 99

5.2 Parsing table size comparison . 101

5.3 Parsing table conflict comparison . 104

5.4 Time performance comparison (sec) . 106

5.5 Memory performance comparison (MB) . 108

5.6 Parsing table size comparison . 110

5.7 Parsing table conflict comparison . 113

5.8 Time performance comparison (sec) . 115

5.9 Memory usage comparison (MB) . 116

5.10 Memory increase percentage of UPE (and UPE Ext) v.s. PGM LR(1) 117

5.11 Percentage of state number change compared to PGM LR(1) 117

5.12 Comparison with other parser generators . 118

5.13 Parsing table size comparison . 120

xii

5.14 Conflict comparison . 120

5.15 Running time comparison . 120

6.1 LR(1) storage tables in y.tab.c for grammar G6.2 155

6.2 LR(k) storage tables in y.tab.c for grammar G6.2 156

7.1 DPFE types and their full names . 175

7.2 DPFE types, significance, sources and status . 176

xiii

List of Figures

2.1 Hierarchy of Parsing Algorithms . 7

3.1 Overall architecture of the Hyacc parser generator 21

3.2 Relationship of algorithms from the point of view of data flow 22

3.3 Relationship of algorithms from the point of view of implementation 23

3.4 Parsing machine of grammar G3.1 . 26

3.5 LALR(1) parsing machine of grammar G3.2 . 31

3.6 LR(1) parsing machine of grammar G3.2 . 32

4.1 State 0 of the parsing machine of grammar G3.1 42

4.2 Unit Production Elimination on the parsing machine of grammar G3.1 58

4.3 Applying Unit Production Elimination on the parsing table 60

4.4 Assume states Ta and Tb have the same action on token y 61

4.5 Remove same-action states after unit production elimination 69

4.6 Apply UPE and UPE Ext on Grammar G4.2 . 70

4.7 The Two Phases of Lane-Tracing Algorithm . 72

4.8 LR(0) parsing machine for grammar G4.3 . 74

4.9 Lane tracing on conflict configurations . 74

4.10 LALR(1) parsing machine for G4.3 generated by lane tracing 75

4.11 Grammar G4.4: states on the conflicting lanes . 85

4.12 Grammar G4.4: conflicting lanes traced in lane-tracing 86

4.13 The approaches to LR(1) parsing machine . 96

xiv

5.1 Parsing Table Size Comparison . 102

5.2 Running Time Comparison . 106

5.3 Memory Usage Comparison . 108

5.4 Parsing Table Size Comparison . 111

5.5 Parsing Table Size Change Percentage . 111

5.6 Running Time Comparison . 115

5.7 Memory Usage Comparison . 116

6.1 LR(k) lane-tracing: joint and cycle conditions . 136

6.2 The need of getting more context for increasing k in LR(k) lane-tracing 137

6.3 Parsing machine of grammar G6.2 . 151

6.4 Parsing machine of grammar G6.2 - the part relevant to lane-tracing 151

6.5 Parsing machine of grammar G6.3 - the part relevant to lane-tracing 157

6.6 Parsing machine of grammar G6.4 - the part relevant to lane-tracing 160

6.7 LR(2) part of the LR(1) parsing machine for grammar G6.7 164

6.8 Parsing machine of the LR(2) grammar for Yacc 168

6.9 The part of the Yacc grammar parsing machine related to shift/reduce conflicts . . . 169

6.10 The part of Chris Clark’s grammar’s parsing machine related to reduce/reduce conflicts170

7.1 Architecture of the DP2PN2Solver . 171

7.2 Adding the latex2gDPS compiler to the architecture of the DP2PN2Solver 172

7.3 DPFE Type API of the latex2DPS compiler . 173

xv

Chapter 1

Introduction

Compiler theory and practice are among the fundamental and core research topics of computer

science. The entire industry of computer science and engineering is based upon the capability of

translating from human-understandable high-level programming languages into low-level, machine-

executable instructions. This process is made possible by compilers. The theory and practice of

compilers are related closely to computational complexity, automata theory, software engineering,

computer architecture and operating systems. The writing of compilers used to be considered one

of the most daunting programming tasks. Fortunately, this has been much simplified by the use of

compiler/parser generation tools.

For 40 years it has been believed that the original canonical LR(1) algorithm proposed by Knuth

in 1965 [29], although the most powerful parser generation algorithm for context-free languages,

was too expensive in time and space costs to be practical. Further research proposed SLR, LALR

and LL algorithms that can handle subsets of the LR(k) grammar. The LALR(1) algorithm is con-

sidered powerful enough to cover most programming languages and efficient enough in practice.

LALR(1) parser generators like Yacc and Bison have been widely embraced by the industry since

1970s. Subsequent research on reduced-space LR(1) algorithms, which reduce the state space and

thus improve the performance of canonical LR(1) parser generation, were made mostly by Pager

[47] [48] and Spector [57] [58]. Despite its popularity, LALR(1) parsing can’t resolve reduce/reduce

conflicts and thus causes lots of effort in grammar redesign, and the tweaked grammars may differ

from those before modification. Since the 1990s LL parser generators like ANTLR and JavaCC

have started to gain popularity, but they cannot handle left-recursive grammars and often require

grammar modification as well. Besides, both LALR and LL grammars are just subsets of LR(1)

1

grammars. In essence, all of SLR, LALR and LL grammars are proper subsets of LR grammars.

All languages recognizable by SLR(k), LALR(k), LL(k) and LR(k) grammars can be recognized by

corresponding LR(1) grammars. For these reasons, the compiler industry is constantly looking for

LR(1) parser generators. Current implementations of LR(1) parser generators are often inefficiently

based on Knuth’s method, or based on unproved ad hoc methods, or employe the algorithms of

Pager and Spector but implemented in relatively unpopular languages, or are proprietary and thus

have unknown implementation details, and none is as popular as the LALR(1) parser generators

Yacc and Bison. In addition, with all the versions of LR parser construction algorithms that have

been developed, no study has been made of their comparative merits.

LR(k) parser generation is even more expensive and complicated than LR(1) parser generation.

Although widely studied on the theoretical side, very little practical work has been done due to the

performance problem. LR(k) parser generation can serve as an alternative to the more expensive

GLR algorithm, and be used in areas such as natural language processing. It would be of value to

design and implement a LR(k) algorithm based on reduced-space LR(1) algorithms.

For the reasons given above, this work has developed Hyacc, an efficient, practical and Yacc-

compatible open source LR(0)/LALR(1)/LR(1)/LR(k) parser generation tool in C, based on the

canonical LR(1) algorithm of Knuth, the general practical LR(1) parsing algorithm, the lane-tracing

algorithm, the unit production elimination algorithm of Pager and a new LR(k) algorithm called the

edge-pushing algorithm. The following have been achieved:

1) Extended the unit production elimination algorithm of Pager [46] by eliminating redundant

states and thus minimizing the parsing machine.

2) Investigated details in the existing LR(1) algorithms, especially the second phase of the lane-

tracing algorithm which has not been discussed in much detail before.

3) Compared the performance of LR(1) algorithms (Knuth’s canonical algorithm [29], Pager’s

lane-tracing algorithm [47] and Pager’s practical general method [48]) as implemented in

Hyacc with the LALR(1) algorithm as implemented in Yacc and Bison with regard to conflict

resolution, and time and space requirements. The performance study was conducted on 13

programming languages, including Ada, ALGOL60, COBOL, Pascal, Delphi, C, C++, Java

and more. The result demonstrated that a careful LR(1) implementation based upon improved

algorithms and carefully selected data structures can be sufficiently efficient in time and space

to be of practical use with modern computing facilities.

2

4) Explored the extension of LR(1) parser generation to LR(k) parser generation using the lane-

tracing algorithm. A new LR(k) algorithm called the edge-pushing algorithm was designed

and implemented.

5) Developed a latex2gDPS compiler (gDPS stands for general Dynamic Programming Spec-

ification, and is the language proposed by Holger [40] to represent dynamic programming

problems) using Hyacc.

This dissertation is arranged as follows: Chapter 1 is an overview of the motivation and the-

sis contribution. Chapter 2 introduces the background and literature research result on LR(1) and

LR(k) parser generation theory and practice. Chapter 3 introduces the Hyacc parser generator and

its design. Chapter 4 concentrates on LR(1) parser generation, introduces varies LR(1) algorithms,

discusses their implementation issues and strategies, possible extensions, and compared different

LR(1) algorithms. Chapter 5 concentrates on LR(k) parser generation, introduces the design of

the proposed edge-pushing algorithm, and then discusses some unsolved issues. Chapter 6 is on

algorithm performance measurement and comparison study. Chapter 7 is on the design and imple-

mentation of the latex2gDPS compiler. Chapter 8 concludes the current work. Chapter 9 introduces

future work to explore. Finally, the user manuals of the parser generator Hyacc is attached in the

end.

The notations used in this dissertation follow from [46][47][48] unless otherwise explained.

In short, greek and roman letters are used to specify grammars and algorithms in text and figures.

Greek letters such as α, β, γ, ψ, φ, ω, ... represent a string of symbols. ε represents the empty string.

In the context of specifying a grammar, roman letters such as A, B, C, ..., a, b, c, ... represent a single

symbol, of these upper case letters represent non-terminal symbols, and lower case letters represent

terminal symbols. In the context of specifying algorithms or mathematical formula, roman letters

may have other meanings such as a string, a number, a state or a set, and are not limited to terminal

or non-terminal symbols. The symbol a means the end of an input stream. � stands for the empty

set. The concepts of state and configuration used in this discussion may be referred to as “item set”

and “item” in some other literature. The notation threads(α, k) is equivalent to FIRSTk(α) in

other places.

3

Chapter 2

Background and Related Work

2.1 Parsing Theory

2.1.1 History of Research on Parsing Algorithms

Early syntax parsing endeavors started on arithmetic expressions and employed no formal meth-

ods. The programs often embedded grammar rules inside code. It was hard to implement and mod-

ify. This was improved after 1952 by left-to-right sequential processing. The first Fortran compiler

was developed in 1956. Stack-based algorithms for the parsing of arithmetic expressions and high-

level languages in a bottom-up manner were proposed by 1959. In 1957, Chomsky defined the

concept of context free grammars and languages, upon which the Backus Naur Form (BNF) was

derived. These were later used to describe the design of languages, first for ALGOL60 in 1963. The

notions of handle and bounded context grammar were raised in the analysis of bottom up grammars

since the early 1960s. In 1965, Knuth generalized these ideas into the computational expensive

canonical LR(k) algorithm [29]. A series of algorithms were invented to make LR parsing more

practical. These include the divide-and-conquer algorithm of Korenjak in 1969 [31], the SLR and

LALR grammars in DeRemer’s PhD thesis in the same year [24], and the L(m)R(k) algorithm of

Pager in 1970 [43] and 1972 [44]. Actual parser generators were soon implemented using SLR(1)

and LALR(1) algorithms. The well-known parser generator Yacc, a LALR(1) parser generator,

came to life in 1975 at the AT&T lab and soon was widely accepted by compiler developers. Re-

search on finding general methods to parse LR(1) grammars continued. Such efforts include those of

Pager in 1970 [42], Aho and Ullman in 1972 [14] and Joliat in 1973 [28]. The first real breakthrough

4

was Pager’s lane-tracing algorithm [47] and practical general method [48], both were designed for

LR(k) grammars and published in 1977. In 1981 Spector reported another splitting method [57],

which he refined and published again in 1988 [58]. In 1985, Tomita established the foundation of

GLR algorithm [59]. This algorithm was first implemented in the 1992 PhD thesis of Rekers [54].

LL parsing was first studied in 1968 [32][55], and LL parser generators were considered impractical

then. This view was changed since the release of parser generator ANTLR in 1992, and today the

popular Java parser generator JavaCC also uses the LL(k) algorithm. Most recently, Tribble came

up with the Honalee LR(k) algorithm in 2002 [61].

Examples of most recent research on parsing theory include algorithms on non-LR(1) algo-

rithms [27], on natural language parsing and processing, on parsing ambiguity, on combining with

different computation models like neural networks [64] and Petri nets [62], and on the development

of parser generators for new programming languages and in parallel, quantum [56][26] and DNA

[33] computing environments.

2.1.2 Classification of Parsing Algorithms

Common parsing methods can be classified into these categories: recursive descent, operator

precedence, SLR, LALR, LL, LR and GLR. Most of the theoretical foundations of these paradigms

were laid from the 1960s to 1980s.

As shown in Table 2.1, parsing algorithms for context-free grammars can be classified into

top-down and bottom-up techniques. Recursive descent and LL parsers are examples of top-down

parsers. Operator precedence, SLR, LALR, LR and GLR parsers are examples of bottom-up parsers.

A bottom-up parser is also called a shift-reduce parser because shift and reduce are the two basic

actions involved.

5

Type Parsing methods Pros Cons
Recursive descent Simple Cannot be used on left-

recursive grammars, may
need backtracking

Top-down
(leftmost
derivation)

LL No backtracking needed Cannot handle left-
recursive grammars. LL
grammar is also hard to
write

Operator precedence simple Covers only a small set
of grammars (math ex-
pressions), cannot handle
operators with more than
one precedence

SLR Simple Not powerful enough for
most grammars

Bottom-up
(rightmost
derivation)

LALR Well balanced effi-
ciency and power

Contains reduce/reduce
conflicts

LR Most powerful for
context-free grammars,
is a super set of LL,
SLR and LALR gram-
mars, linear in parsing
cost

Complex and compu-
tationally expensive in
parser generation

GLR Handles non-
deterministic and
ambiguous grammars
by branching, good
for natural language
processing

Even more complex and
expensive in time and
space, cubic in parsing
cost on average

Table 2.1: Classification of Parsing Algorithms

6

Figure 2.1 shows the hierarchy of parsing algorithms (figure adapted from [16]). The set of LR

grammars is the superset of all the SLR, LALR and LL grammars, and can cover all unambiguous

context-free grammars. LR(k) grammars can actually be converted into LR(1) grammars. GLR is

not shown because besides the fundamental characteristic of branching, it can apply different pars-

ing methods in its parse engine, like LR(0), LALR(1) or LR(1), where LR(0) is the common choice

when parsing natural languages, and LR(1) is rarely used because of the poor performance.

Figure 2.1: Hierarchy of Parsing Algorithms

7

2.2 LR(1) Parsing Theory

2.2.1 The Canonical LR(k) Algorithm of Knuth (1965)

The algorithm was first described in Knuth’s 1965 paper [29]. It is known as the canonical

LR(k) parser generation algorithm.

This algorithm was deemed as computationally expensive and not practical at the time when

computer memories were small and processors were slow, since the worse case of complexity grows

exponentially. Efficiency of LR(k) parser generation has remained a problem for many years, and

today it is still a widely accepted conception by people in both industry and academia. Implemen-

tation attempts were usually limited to the case of k = 1, which is still quite difficult.

However, because of the theoretical attractiveness of the recognition power of the LR(k) algo-

rithm, many researchers attempted to design algorithms that improve its performance. Many of

the research results handle only a subset of the canonical LR(k) grammars. Several attempts, how-

ever, indeed decrease the state space of the canonical LR(k) algorithm without compromising its

generality, as we soon will see in the discussion below.

2.2.2 The Partitioning Algorithm of Korenjak (1969)

Korenjak’s method [30] is to partition a large grammar into small parts, check each part to see

whether it is LR(1), generate Knuth canonical LR(1) parsing table, and combine these small tables

into a large LR(1) parsing table for the original grammar.

The obvious problem faced by this method is how to partition the grammar. Relevant problems

include how many times should partition be used, and what is the general heuristic used to do the

partitioning, etc.

It would also be interesting to see if we can apply the reduced-space LR(1) algorithms discussed

later in this dissertation on the partitioned parts instead of the Knuth canonical LR(1) algorithm.

Korenjak designed the partitioning method before the appearance of such algorithms, so back then

it was not possible for him to consider this.

8

2.2.3 The Lane-tracing Algorithm of Pager (1977)

This is the first practical general method [45] [47] used to create LR(k) parser generator. This

algorithm first generates the LR(0) parsing machine, and then proceeds to split inadequate states

(those that cause conflicts). The lane tracing algorithm was tried on a series of LR(1), LR(2) and

LR(3) grammars without computational difficulty. As an example of application to complex gram-

mars, the lane-tracing algorithm was applied to the ALGOL grammar on a 360/65 and finished the

work in less than 0.8 second in 1977 [47].

The lane-tracing algorithm however is difficult to understand and implement. The literature

research shows no known public implementation of it today.

2.2.4 The Practical General Method of Pager (1977)

Compared to the lane-tracing algorithm, the practical general method [48] solves the state-

space problem of LR(k) parser generation from the other end of the spectrum. Instead of splitting

inadequate states, it generates all the states, while merging compatible ones along the way. This

keeps low the actual number of states, and thus the need for time and space. The size of the resulting

parsing table is similar to that of an LALR parsing table. The merging is based on the concept of

weak compatibility defined in the paper. Two states are combined if and only if they are weakly

compatible. The concept of strong compatibility is also defined, which can combine more states

and result in the most compact parsing machine, but at the cost of much more computation.

This method based on weak compatibility is simpler in concept and easier to implement than

the lane-tracing algorithm. Both generate parsing machines of the same size.

There are several known implementations of this algorithm, including LR, LRSYS, LALR,

GDT PC, Menhir and the Parsing module, which we will discuss in section 2.3.

Besides the lane-tracing algorithm and the practical general method, Pager also proposed other

supplemental optimization algorithms. Among these is the algorithm of unit production elimination.

9

2.2.5 The Splitting Algorithm of Spector (1981, 1988)

Spector first proposed his algorithm in 1981 [57], based on splitting the inadequate states of

an LR(0) parsing machine. In that sense it is very similar to the Lane-tracing algorithm of Pager,

and actually may constitute a part of the Lane-tracing algorithm. He further refined his algorithm in

1988 [58] and implemented his algorithm in a 2300-line C program as a demonstration. However the

implementation just aimed as a demonstration, and did not implement other common optimization

techniques. His implementation is not known to exist today. He did not have a formal proof of the

validity of the algorithm, and only gave some examples in his publications to show how it worked.

His papers also lack details on how to handle special situations such as loop conditions, so a real

implementation has to rely on the implementer’s creativity.

It is known that the Muskox parser generator implemented a version of Spector’s algorithm.

The author Boris Burshteyn of Muskox said that the 1988 paper of Spector lacked implementation

details, so Muskox implemented the algorithm in a modified way according to his understanding

of it. Performance-wise, “it takes 400Kbytes for each of the C, F77, and MUSKOX grammars”,

which seems fairly good. Boris also mentioned that “The only interesting pathological case I know

about is a COBOL grammar from PCYACC (TM of ABRAXAS SOFTWARE). There, MUSKOX

algorithm reached the limit of 90Mbytes and then stopped since there were no virtual memory left.”

It would be interesting to see if it would work out on today’s computer with much larger memory.

It is interesting how Spector referred to Pager’s practical general method as an example of an

existing practical LR(k) algorithm in his papers of both 1981 [57] and 1988 [58]. In the 1981 paper

he said Pager’s algorithm is “almost as efficient as current LALR methods”, but in the 1988 paper

he commented “Unfortunately, his algorithm is extremely slow”. This comment is believed more

just as a justification for the proposal of his algorithm, but not the true reality for Pager’s algorithm.

2.2.6 The Honalee Algorithm of Tribble (2002)

Tribble proposed his algorithm in 2002 and further refined it until 2006 [61]. It works identi-

cally to the practical general method of Pager in concept, merging similar states as new states are

generated. Tribble independently derived his algorithm, which he first called the MLR (Merged

LR(k)) algorithm, and then called the Honalee LR(k) algorithm.

10

Tribble later stated that his algorithm was not totally LR(1), just larger than LALR(1). The

problem is that the Honalee algorithm avoids merging states if the merging causes immediate re-

duce/reduce conflict. However it is possible that even though an immediate conflict does not occur,

conflicts can occur in successor states later. An example is given by Sylvain Schmitz in [6].

2.2.7 Other LR(1) Algorithms

Besides the above algorithms, there is a general conception of how LR(1) can be achieved by

starting from a LR(0) parsing machine and splitting those states that cause conflicts. This in concept

is very similar to the lane-tracing algorithm of Pager and the splitting algorithm of Spector.

2.3 LR(1) Parser Generators

2.3.1 LR(1) Parser Generators Based on the Practical General Method

A survey over the Internet shows that there are about 15 LR(1) parser generators. Of these that

we are aware of, six are implementations of Pager’s algorithm.

The six LR(1) parser generators that implemented Pager’s practical general method are: LR,

LRSYS, LALR, GDT PC, Menhir and the Python Parsing module.

The LR program in ANSI standard Fortran 66 was developed in 1979 at the Lawrence Livermore

National Laboratory [63]. It implemented Pager’s algorithm and can accept all LR(1) grammars. It

was ported to more than nine platforms, and was used for developing compilers and system utilities.

However, it is rarely used today, and unfamiliar to most people. One reason may be because that it

was implemented in a language specifically for science computation, and not in a general-purpose

language like Pascal or C. Its rigid and weird input format also limited its popularity. Besides, LR

is controlled by the government and is not open source. In addition, the use of LR is not free.

The LRSYS system in Pascal was developed around 1985, also at the Lawrence Livermore

National Laboratory [5]. It was based on the LR parser generator. There were versions for CRAY1,

DEC VAX 11 and IBM PC. Parser engines in Pascal, FORTRAN 77, and C were provided. The

CRAY1 and DEC VAX11 versions also contain engines for LRLTRAN and CFT-FORTRAN 77.

The LRSYS program was tested under MS-DOS 3.3 on an 80286, but no performance data is

11

available. The LRSYS, like LR, sank into the dusty corner of history and became unknown to most

people.

Certain source stated that Pager’s practical general method was also used in a parser generator

named LALR in 1988, implemented in the language MACRO-11 on a RSX-11 machine. This parser

generator again is unknown to most people today.

The same source 4 stated that Pager’s algorithm was also used in GDT PC (Grammar Debugging

Tool and Parser Constructor) in about 1988. The implementation language is unknown.

The Menhir program in Objective Caml was developed around 2004 in France by academic

researchers [53], and the source code is actively maintained. It implemented Pager’s algorithm with

slight modification. It has since been widely used in the Caml language community, quickly replac-

ing the previous Caml parser generator ocamlyacc. The slight modification to Pager’s algorithm is

to merge a new state into an existing one if it is a subset of the latter.

The Python Parsing module was developed most recently at the beginning of 2007 [10]. Its

author got the idea when developing a language grammar in his work and felt an LALR(1) parser

generator could not meet his needs. A wide literature survey led him to Pager’s practical general

method. This parser generator also implemented the CFSM (Characteristic Finite State Machine)

and GLR drivers to handle non-deterministic and ambiguous grammars. It was released as open

source software on March 20, 2007 [10]. The author estimated the Python implementation to be

about 100 times slower than a C counterpart.

Proprietary implementations of Pager’s practical general method may exist. But “proprietary”

means that their technical details are hidden from the public.

2.3.2 LR(1) Parser Generators Based on the Lane-Tracing Algorithm

The lane-tracing algorithm was implemented by Pager in the 1970s [47]. According to the

description, the performance of the implementation was at the same level as Hyacc implemented in

this work. Considering how the hardware was restricted back then, this is quite impressive. However

the implementation was done in Assembly for OS 360. This is not portable to other platforms. There

is also no known running instance of this algorithm on OS 360 today.

We did not find any other available lane-tracing algorithm implementations.

12

2.3.3 LR(1) Parser Generators Based on Spector’s Splitting Algorithm

Spector himself implemented this in an experimental, incomplete parser generator as described

in his 1988 paper [58]. Later, in 1994 the Muskox parser generator 1 implemented a version of

Spector’s algorithm [18]. The author Boris Burshteyn said that the 1988 paper of Spector lacked

implementation details, so Muskox implemented the algorithm in a modified way according to his

understanding of it.

We found the splitting algorithm of Spector very similar to the lane-tracing algorithm of Pager

in concept. At the same time it lacks enough details and also lacks strict proof as to the validity of

the algorithm. For these reasons we did not implement his algorithm.

Although the splitting algorithm of Spector and the lane-tracing algorithms are very close in

concept, most people that took the splitting approach to LR(1) parser generation claimed they got

the idea from Spector’s paper. This possibly is because Spector’s paper was published more recently

and caught more attention when the advancement in hardware made it possible to seriously consider

such an implementation.

2.3.4 Other LR(1) Parser Generators

More efforts were done in this direction. But most of these other approaches are not formally

available in literature, are implemented in proprietary products, or sometimes are not fully working

as our literature research shows.

LRGen (C) [34] is a long-standing, highly efficient parser generator. Its LR(1) algorithm (2007)

seemed to have some minor defects according to the description on the website, and is between

LALR(1) and LR(1).

Yacc/M (Java) [60] implemented the MLR algorithm designed by the author (2006). However

it seems the algorithm also has defects, and is between LALR(1) and LR(1).

There are several implementations that claim to have efficient LR(1) parser generation.

Yacc++ (C) [12] is a commercial product. It started as a LALR(k) parser generator in 1986,

then added LR(1) around 1990 using a splitting approach that loosely based on Spector’s algorithm

[22] [23].

13

Dr. Parse (C/C++) [8] is another commercial production that claimed to use LALR(1)/LR(1).

But its implementation details are unknown.

MSTA (C/C++) [11], which is a part of the COCOM toolset, took the splitting approach.

2.4 The Need For Revisiting LR(1) Parser Generation

2.4.1 The Problems of Other Parsing Algorithms

These other parsing algorithms include SLR, LALR, LL and GLR. SLR is too restrictive in

recognition power. GLR often uses LR(0) or LALR(1) in its engine. GLR branches into multi-

ple stacks for different parse options, eventually disregards the rest and only keeps one, which is

very inefficient and is mostly used on natural languages due to its capability in handling ambigu-

ity. LL does not allow left recursion on the input grammar, and tweaking the grammar is often

needed. LALR has the “mysterious reduce/reduce conflict” problem and tweaking the grammar is

also needed. Despite this, people consider the LALR(1) algorithm the best tradeoff in efficiency

and recognition power. Yacc and Bison are popular open source LALR(1) parser generators.

2.4.2 The Obsolete Misconception of LR(1) versus LALR(1)

LR(1) can cover all the SLR, LALR and LL grammars, and is equivalent to LR(k) in the sense

that every LR(k) grammar can be converted into a corresponding LR(1) grammar (at the cost of

much more complicated structure and much bigger size), so is the most general in recognition

power. However, the belief of most people is that an LR(1) parser generation is too slow, takes too

much memory, and the generated parsing table is too big, thus impractical performance-wise.

The typical viewpoints on the comparison of LR(1) and LALR(1) algorithms are:

1) Although a subset of LR(1), LALR(1) can cover most programming language grammars.

2) The size of the LALR(1) parsing machine is smaller than the LR(1) parsing machine.

3) Each shift/reduce conflict in a LALR(1) parsing machine also exists in the corresponding

LR(1) parsing machine.

14

4) “mysterious” reduce/reduce conflicts exist in LALR(1) parsing machines but not in LR(1)

parsing machines, and “presumably” this can be handled by rewriting the grammar.

However, the LR(1) parser generation algorithm is superior in that the set of LR(1) grammars is a

superset of LALR(1) grammars, and the LR(1) algorithm can resolve the “mysterious reduce/reduce

conflicts” that cannot be resolved using LALR(1) algorithm. Compiler developers may spend days

after days modifying the grammar in order to remove reduce/reduce conflicts without guaranteed

success, and the modified grammar may not be the same language as initially desired. Besides,

despite the general claim that LR(1) parsing machines are much bigger than LALR(1) parsing ma-

chines, the actual fact is that a LR(1) parsing machine is of the same size as a LALR(1) parsing

machine for LALR(1) grammars [57][58]. Only for LR(1) grammars that are not LALR(1), are

LR(1) parsing machines much bigger. Further, there exist algorithms that can reduce the running

time and parsing table size, such as those by Pager and Spector.

2.4.3 The Current Status of LR(1) Parser Generators

As we have seen, there is a scarcity of good LR(1) parser generators, especially with reduced-

space algorithms. Many people even have no idea of the existence of such algorithms. It would be

of value to provide a practical tool to bring the power of these algorithms to life.

2.5 LR(k) Parsing

Much early theoretical work based their discussions on LR(k). From a theoretical point of view,

LR(k) has been widely studied. But such theoretical advantage does not translate into practical

success due to the complexity involved, and the time and space costs. The cost of LR(k) parser

generation comes from its exponential behavior based on two factors: 1) the number of states in the

parsing machine, and 2) the number of context tuples for the configurations.

The 1965 paper of Knuth was about LR(k) parser generation for arbitrary k. After that, a lot of

work was done with the aim of reducing the performance cost so as to make it practical.

The work of Pager in the 1970s was about LR(k) parser generation. There have been reports of

LR(k) analysis on the grammars of real languages such as ALGOL for LR(2) and LR(3).

15

M. Ancona et. al. published some papers on LR(k) parser generation from 1980s to 1990s

[36][38][39][37][35]. [39] proposed a method in which non-terminals are not expanded to terminals

in contexts, and expansion is not done until absolutely needed to resolve inadequacy. This actually

defers the calculation of FIRSTk(α) until absolutely necessary. They claim savings in both time

and storage space by deploying this method when tried on several programming language grammars.

They have worked on a LR(k) parser generator for their research, but no publicly available product

was reported.

In 1993, Terence Parr’s Phd thesis “Obtaining practical variants of LL(k) and LR(k) for k >

1 by splitting the atomic k-tuple” [52] provided important theoretical implications for working on

multiple lookaheads and claimed close-to-linear approximation to the exponential problem. The

idea is to break the context k-tuples, which can be applied to both LL(k) and LR(k). Such concept

is close to what was in Pager’s paper on how to handle LR(k) grammars for k > 2 using the lane-

tracing algorithms. Terence’s ANTLR LL(k) parser generator was a big success. LL(k) parser

generation is considered easier to work with. Theoretically it is also less powerful than LR(k) in

recognition power. His PhD thesis argues that adding semantic actions to a LR(k) grammar degrades

its recognition power to that of a LL(k) grammar. Based on this assumption he worked on LL(k)

parser generation only.

Josef Groelsch worked on a LR(1)/LR(k) parser generator in 1995. In case of LR(1) grammars,

it was practical only for small to medium size grammars. LR(k) is certainly more expensive.

Bob Buckley worked on a LR(1) parser generator called Gofer in 1995. He said it was a long

way to go from being a production software.

More recently in 2005, Karsten Nyblad claimed to have a plan for an LR(k) implementation.

But there was no more news from him.

Chris Clark worked on the LALR(k)/LR(1)/LR(k) parser generator Yacc++. It’s LR(k) imple-

mentation is loosely based on Spector’s paper [22] [23]. But there was an infinite loop problem on

the LR(k) of Yacc++. Thus they only used the LR(k) feature internally and did not make it public.

Ralph Boland worked on this, but report on his results was not found.

Paul Mann mentioned that Ron Newman’s Dr. Parser works on LR(k) for k = 2 or maybe 3.

16

It was mentioned that Etienne Gagnon’s SableCC parser generator implemented LALR(k) parser

generation for k > 1. However checking the SableCC website found that it only claims LALR(1).

Will Donahue and Adrian Johnstone also have worked on LR(k).

The only claimed successful efficient LR(k) parser generator is the MSTA parser generator in the

COCOM tool set. The author Vladimir Makarov says it generates fast LALR(k) and LR(k) grammar

parsers with “acceptable space requirements”. The author was from Russia and his publications on

this around 1990s were not available in our literature research.

To conclude, LR(k) parser generation is hard. Most attempts have not turned out well.

2.6 Conclusion

In summary, we can conclude about the state of the art that:

1) Parsing algorithms such as SLR, LALR, LL and GLR all have their limitations compared to

LR(1). The major problem of LR(1) algorithm is in its time and space cost.

2) There are always people looking for a LR(1) parser generator. But most often they do not get

what they want, either because it is not implemented in the language they desired, or does not

use the input format or other features they need, or is proprietary and not everyone wants to

pay the asked price, or simply because they cannot find one.

3) The pure canonical Knuth LR(1) parser generation still

4) Information on LR(1) parsing is scarce both in the literature and on the Internet.

5) LR(k) parser generation, although widely studied in theory, is even less practical from a

pragmatic point of view. There have been very little work on this.

The LL(k) algorithm was considered impractical in the 1970s and 1980s, but the myth was

debunked in the 1990s when LL(k) parser generators like ANTLR and JavaCC were created. Con-

sidering all the advantages that LR(1) parsing can provide, we feel it is beneficial to revisit the LR(1)

parser generation problem and to provide a practical solution to break the long-held misconception

on its impracticality. Better yet, we hope to try LR(k) by extending our LR(1) solution.

17

Chapter 3

The Hyacc Parser Generator

3.1 Overview

This work has developed Hyacc, an efficient, practical and Yacc/Bison-compatible open source

LR(0)/LALR(1)/LR(1)/LR(k) parser generator in ANSI C from scratch.

Hyacc is pronounced as “HiYacc”, means Hawaii Yacc.

Hyacc supports these algorithms:

1) The original Knuth LR(1) algorithm (Knuth LR(1))

2) The LR(1) practical general method (weak compatibility) (PGM LR(1))

3) The UPE (unit production elimination) algorithm (UPE)

4) Extension to the UPE algorithm (UPE Ext)

5) LR(0) algorithm

6) LALR(1) based on the first phase of the lane-tracing algorithm (LT LALR(1))

7) The LR(1) lane-tracing algorithm. It contains two phases: phase 1 and phase 2. There are two

alternatives for phase 2, one is based on the practical general method (LT LR(1) w/ PGM),

the other is based on lane-tracing table (LT LR(1) w/ LTT).

8) The edge-pushing LR(k) algorithm (EP).

18

Current features include:

1) Implements the original Knuth LR(1) algorithm [29].

2) Implements the practical general method (weak compatibility) [48]. It is a LR(1) algorithm.

3) Removes unit productions [46].

4) Removes repeated states after removing unit productions.

5) Implements the lane-tracing algorithm [45][47]. It is a LR(1) algorithm.

6) Supports LALR(1) based on the lane-tracing algorithm phase 1.

7) Supports LR(0).

8) Experimental LR(k) with the edge-pushing algorithm, which now can accept LR(k) grammars

where lane-tracing on increasing k do not involve cycles.

9) Allows empty productions.

10) Allows mid-production actions.

11) Allows these directives: %token, %left, %right, %expect, %start, %prec.

12) In the case of ambiguous grammars, uses precedence and associativity to resolve conflicts.

When unavoidable conflicts happen, in the case of shift/reduce conflicts the default action is

to use shift, in the case of reduce/reduce conflicts the default is to use the production that

appears first in a grammar.

13) Is compatible to yacc and bison in input file format, ambiguous grammar handling, error

handling and output file format.

14) Works together with Lex. Or the users can provide the yylex() function themselves.

15) If specified, can generate a graphviz input file for the parsing machine.

16) If specified, the generated compiler can record the parsing steps in a file.

17) Is ANSI C compliant.

18) Rich information in its debug output.

19

What’s not working so far and to be implemented:

1) Hyacc is not reentrant.

2) Hyacc does not support these Yacc directives: %nonassoc, %union, %type.

3) The optimization of removing unit productions can possibly lead to shift/shift conflicts in the

case of grammars that are ambiguous or not LR(1), and thus should not be applied in such

situation.

4) Full LR(k) where the cycle problem is solved.

Hyacc is ANSI C compliant, which makes it extremely easy to port to other platforms.

All the source files of Hyacc comes under the GPL license. The only exceptions are the LR(1)

parse engine file hyaccpar and LR(k) parse engine file hyaccpark, which come under the BSD

license. This should guarantee that Hyacc itself is protected by GPL, but the parser generators

created by Hyacc can be used in both open source and proprietary software. This addresses the

problem that Richard Stallman discussed in “Conditions for Using Bison” of his Bison 1.23 manual

and Bison 1.24 manual.

Hyacc version 0.9 has been released to the open source community at sourceforge.net [20] in

January 2008, and a notice posted to the comp.compiler news group [19]. So far there are over 400

downloads at sourceforge.net (average one download per day). The version 0.9 contains the Knuth

LR(1), PGM LR(1), UPE and UPE Ext algorithms. When ready at a later time, we will release the

newest version of Hyacc, which contains a bug fix to version 0.9, new interface features, and new

algorithms including LR(0), LALR(1), lane-tracing LR(1) and LR(k).

20

3.2 Architecture of the Hyacc parser generator

The following are the steps that constitute the architecture of the Hyacc parser generator.

Figure 3.1: Overall architecture of the Hyacc parser generator

These steps are independent of each other.

The y.tab.c file is the parser generator file with the parsing machine stored in arrays.

The y.output file contains all kinds of information needed by the compiler developer to under-

stand the parser generation process and the parsing machine.

The y.gviz file can be used as the input file to the Graphviz software to generate a graph of the

parsing machine.

Of these steps, “Generate parsing machine” is the key step. It creates the parsing machine

according to different algorithms as specified in the command line switches by the user. The details

of these algorithms will be discussed in the next chapter. These algorithms may be independent or

have a layered structure on each other. Figure 3.2 and Figure 3.3 show the relationship of these

algorithms. The acronyms used in these figures are defined at the beginning of this chapter on page

18.

21

Figure 3.2 shows the relationship of these algorithms from the point of view of data flow. The

data here is the input grammar. The input grammar can take the left side path, first be processed

by the Knuth LR(1) algorithm, then end here or be processed by PGM LR(1) algorithm. Next it

can either end, or be further processed by UPE and/or UPE Ext algorithms. The right side path is

similar.

Figure 3.2: Relationship of algorithms from the point of view of data flow

This naturally shows the two basic approaches of LR(1) implemented in Hyacc: the approach

of merging states as on the left side of Figure 3.2, and the approach of splitting state as on the right

side of Figure 3.2.

On the merging side, the Knuth canonical LR(1) is the backbone algorithm. The PGM LR(1)

algorithm adds in one step to decide whether to merge two states if they are “compatible” to each

other.

On the splitting side, it always generates the LR(0) parsing machine first. If requested, it can

generate the LALR(1) parsing machine based on the first phase of the lane-tracing algorithm. Then

if specified, it can go on with the second phase of lane-tracing to generate LR(1) parsing machine.

There are two methods for the second phase of lane-tracing. The first is based on the PGM method,

the second is based on a lane-tracing table. Then if further specified, it can generate a LR(k) parsing

machine for LR(k) grammars.

22

The generated parsing machine may contain unit productions that can be eliminated. The UPE

algorithm achieves this task. The UPE Ext algorithm can be used to further remove redundant states

after the UPE step.

Figure 3.3 shows the relationship of the algorithms from the point of view of implementation,

i.e., how one algorithm is based on the other. UPE and UPE Ext are independent from these and are

not shown.

Figure 3.3: Relationship of algorithms from the point of view of implementation

3.3 Architecture of the LR(1) Parse Engine

3.3.1 Architecture

Similar to yaccpar of Yacc, hyaccpar is the parse engine of Hyacc. The parser generation process

use hyaccpar as the parse engine, insert the parsing table, then use the parse engine to drive the

table. The hyaccpar parse engine is similar to what is described in many compiler construction

books. Specifically for Hyacc, the parse engine is shown as Algorithm 3.1. The LR(k) parse engine

considers k lookaheads and is different. It is described in Chapter 6 (on page 148).

In the parse engine Algorithm 3.1, a state stack is used to keep track of the current status of

traversing the state machine. The parameter ‘S’ or current state is the state on the top of the

state stack. The parameter ‘L’ or lookahead is the symbol used to decide the next action from

23

the current state. The parameter ‘A’ or action is the action to take, and is found by looking at the

parsing table entry (S, L).

Algorithm 3.1: Hyacc LR(1) Parse Engine Algorithm

Initialization:1

push state 0 onto state stack;2

while next token is not EOF do3

S← current state;4

L← next token/lookahead;5

A← action for (S, L) in parsing table;6

if A is shift then7

push target state on state stack;8

pop lookahead symbol;9

update S and L;10

else if A is reduce then11

output code associated with this reduction if any;12

r1← left hand side symbol of reduction A;13

r2← right hand side symbol count of reduction A;14

pop r2 states from state stack;15

update current state S;16

Atmp← action for (S, r1);17

push target goto state Atmp to state stack;18

else if A is accept then19

if next token is EOF, then is valid accept. exit;20

else, is error. do error recovery or exit;21

else22

is error, do error recovery;23

24

3.3.2 Storing the Parsing Table

Storage tables

The following describes the tables that are used in hyaccpar to store the parsing table.

Let the parsing table have n rows (states) and m columns (number of terminals + non-terminals).

Assume there are r rules, the number of nonempty entries in the parsing table is p.

Table 3.1 in next page lists all the storage tables and explanations to their use. These accurately

define all information in the parsing table.

Complexity analysis

Suppose at state i there is a token j, we can find if an action exists by looking through the

yytbltok table from yytbltok[yyrowoffset[i]] to yytbltok[yyrowoffset[i+1]-1]:

1) if yytbltok[k] == j, then yytblact[k] is the associated action;

2) if yytblact[k] > 0, this is a shift/goto action;

3) if yytblact[k] < 0, is a reduction, then use yyr1 and yyr2 to find number of states to pop and

the next state to goto;

4) if yytblact[k] == 0 then it’s an accept action, which is valid when j is the end of an input

string.

The space used by the storage is: n + 2p + 2r. In most cases the parsing table is a sparse matrix,

n*m > 2p. It can be safe to say that usually n + 2p + 2r < n*m.

For the time used by the search, the main factor is when looking through the yytbltok table from

yytbltok[yyrowoffset[i]] to yytbltok[yyrowoffset[i+1]-1]. This can be made faster by binary search,

which is possible if non-terminals and terminals are sorted alphabetically (or in this case, maybe

numerically since they will be stored numerically here). Or instead of a binary search alone, use the

combination of binary search (e.g., range > 4) and linear search (range ≤ 4). Time complexity is

O(ln(n)).

25

It can be made such that time complexity is O(1), by using the double displacement method

which stores the entire row of each state. That requires more space though.

Examples

An example is given to demonstrate how to use these tables to represent the parsing table.

Example. Given grammar G3.1:

E→ E + T | T
T→ T * a | a

This is a LALR(1) grammar, so its LALR(1) parsing machine and LR(1) parsing machine are

the same. The parsing machine is:

Figure 3.4: Parsing machine of grammar G3.1

26

Array Name Explanation
yyfs[] List the default reduction for each state. If a state does not have

default reduction, its entry is 0. Array size = n.
yyrowoffset[] The offset of parsing table rows in arrays yytblact[] and yytbltok[].

Array size = n.
yyptblact[] Destination state of an action (shift goto reduce accept).

if yytblact[i] > 0, the action is shift/goto,
if yytblact[i] < 0, the action is reduce,
if yytblact[i] is 0, the action is accept.
-10000000 labels the end of the array.

Array size = number of non-empty entries in the parsing table.
yyptbltok[] The token for an action.

if yytbltok[i] is positive, the token is a terminal,
if yytbltok[i] is negative, the token is a nonterminal.
-10000001 is just a place holder for a row.
-10000000 labels the end of the array.

Array size = number of non-empty entries in the parsing table.
yyr1[] If the LHS symbol of rule i is a nonterminal, and its index among

nonterminals (in the order of appearance in the grammar rules) is x,
yyr1[i] = -x. If the LHS symbol of rule i is a terminal (only in case of
unit production removing is used, in such case step 5 of the algorithm
changes the LHS nonterminal of a rule into the corresponding leaf
symbol (can be terminal or nonterminal) in the multi-rooted tree)
and its token value is t, then yyr1[i] = t.
Note this is different from yyr1[] of AT&T yacc or Bison, which
only have nonterminals on the LHS of its rules, so the LHS symbol
is always a nonterminal, and yyr1[i] = x, where x is defined the same
as above.
Array size = number of rules. (Including the augmented rule)

yyr2[] Same as AT&T yacc yyr2[]. Let x[i] be the number of RHS symbols
of rule i, then yyr2[i] = x[i]� 1 + y[i], where y[i] = 1 if production
i has associated code, y[i] = 0 otherwise.
Array size = number of rules (including the augmented rule $accept
= ...).
This array is used for generating semantic actions.

yynts[] List of non-terminals. Actually used only in DEBUG mode.
Array size is the number of non-terminals plus 1.

yytoks[] List of tokens (terminals). Actually used only in DEBUG mode.
Array size is the number of terminals plus 1.

yyreds[] List of the reductions. Note this does not include the augmented rule.
Actually used only in DEBUG mode.
Array size is the number of rules (including the augmented rule).

Table 3.1: Storage tables for the parsing machine in Hyacc parse engine

27

The parsing table is:

state $ + * a E T
0 0 0 0 s3 g1 g2
1 a0 s4 0 0 0 0
2 r2 r2 s5 0 0 0
3 r4 r4 r4 0 0 0
4 0 0 0 s3 0 g6
5 0 0 0 s7 0 0
6 r1 r1 s5 0 0 0
7 r3 r3 r3 0 0 0

Table 3.2: Parsing table for grammar G3.1

Here the parsing table has n = 8 rows, and m = 6 columns. There r = 3 rules including the

augmented rule.

The storage tables in y.tab.c are shown in Table 3.3.

Array yyfs[] lists the default reduction for each state: state 3 has default reduction on rule 4, and

state 7 has default reduction on rule 3.

Array yyrowoffset[] defines the offset of parsing table rows in arrays yytblact[] and yytbltok[].

E.g., row 1 starts at offset 0, row 2 starts at offset 3.

Array yytblact[] is the destination state of an action. The first entry is 97, which can be seen

in the yytoks[] array. The second entry is 1, which stands for non-terminal E. And as we see in

the parsing table, entry (0, a) has action s3, entry (0, E) has action g1, thus in yytblact[] we see

correspondingly the first entry is 3, and the second entry is 1. Entry 10000000 in both yytblact[]

and yytbltok[] labels the end of the array. Entry 0 is yytblact[] labels the accept action. Entry 0 in

yytbltok[] stands for the token end marker $. Entry -10000001 in yytbltok[] labels that this state (row

in parsing table) has no other actions but the default reduction. 10000001 is actually just a dummy

value that is never used, and servers as a place holder so yyrowoffset[] can have a corresponding

value for this row. It may be possible to remove this place holder and let the yyrowoffset[] value for

this row be the same as the next row, but this has not been tried so far.

Entries of array yyr1[] are defined as the index of the LHS token among non-terminals in the

order of the appearance in the grammar rules. So first entry 0 stands for $accept, the second and the

third entries 1 stands for E, the fourth and fifth entries 2 stands for T.

28

#define YYCONST const
typedef int yytabelem;

static YYCONST yytabelem yyfs[] = { 0, 0, 0, -4, 0, 0, 0, -3};

static YYCONST yytabelem yyptbltok[] = {
97, -1, -2, 0, 43, 0, 43, 42, -10000001, 97,
-2, 97, 0, 43, 42, -10000001, -10000000};

static YYCONST yytabelem yyptblact[] = {
3, 1, 2, 0, 4, -2, -2, 5, -4, 3,
6, 7, -1, -1, 5, -3, -10000000};

static YYCONST yytabelem yyrowoffset[] = { 0, 3, 5, 8, 9, 11, 12, 15, 16};

static YYCONST yytabelem yyr1[] = { 0, -1, -1, -2, -2};
static YYCONST yytabelem yyr2[] = { 0, 6, 2, 6, 2};

#ifdef YYDEBUG

typedef struct char *t name; int t val; yytoktype;

yytoktype yynts[] = {
“E”, -1,
“T”, -2,
“-unknown-”, 1 /* ends search */

};
yytoktype yytoks[] = {

“a”, 97,
“+”, 43,
“*”, 42,
“-unknown-”, -1 /* ends search */

};
char * yyreds[] = {

“-no such reduction-”
“E : ’E’ ’+’ ’T’”,
“E : ’T’”,
“T : ’T’ ’*’ ’a’”,
“T : ’a’”,

};
#endif /* YYDEBUG */

Table 3.3: Storage tables in y.tab.c for grammar G3.1

29

Array yyr2[] is defined as described in Table 3.1, and it is easy to see the correspondence of the

values. For example, the first entry 0 is derived as this:

yyr2[0] = x[0] << 1 + y[0] = 1 << 1 + 0 = 0

where x[0] is 1 because the RHS symbol count of rule 0 (this first rule) is 1, and y[0] = 0 because

this rule has no associated semantic action. The second entry 6 is derived as this:

yyr2[1] = x[1] << 1 + y[1] = 3 << 1 + 0 = 6

where x[0] is 1 because the RHS symbol count of rule 0 (this first rule) is 1, and y[0] = 0 because

this rule has no associated semantic action.

Example. Given grammar G3.2:

S→ c X t | c Y n | r Y t | r X n

X→ a

Y→ a

G3.2 is a LR(1) grammar, so the LR(1) parsing machine is bigger. This example shows how a

reduce/reduce conflict in the LALR(1) parsing machine is resolved in the LR(1) parsing machine.

Figure 3.5 shows the LALR(1) parsing machine of G3.2. State 6 contains a reduce/reduce

conflict, because both reductions 5 and 6 can be applied upon context symbols ‘n’ and ‘t’. LALR(1)

parser generators such as Yacc and Bison by default use the rule that appears first in the grammar

specification to solve the conflict, in this case it is reduction 5 ‘X→ a’. However a LR(1) parsing

machine can divide state 6 into two states to avoid such a reduce/reduce conflict. This is shown in

Figure 3.6: state 13 is separated out of state 6, and now both do not have reduce/reduce conflicts.

30

Figure 3.5: LALR(1) parsing machine of grammar G3.2

31

Figure 3.6: LR(1) parsing machine of grammar G3.2

32

3.3.3 Handling Precedence and Associativity

The way that Hyacc handles precedence and associativity is the same as Yacc and Bison. By

default, in a shift/reduce conflict, shift is chosen; in a reduce/reduce conflict, the reduction whose

rule appears first in the grammar is chosen. But this may not be what the user wants. So %left,

%right and %nonassoc are used to declare tokens and specify precedence and associativity to solve

this issue. Actually there is nothing new in this. But information on this is hard to find, so I

summarize my findings below.

Define associativity and precedence

Associativity is defined by three directives: 1) %left: left associativity, 2) %right: right asso-

ciativity, 3) %nonassoc: no associativity - find this symbol (often an operator) twice in a row is an

error. In practice, shift is right associative, reduce is left associative.

Precedence is defined for both tokens and rules.

1) For tokens (terminals)

(a) Two tokens declared in the same precedence declaration have the same precedence.

(b) If declared in different precedence declarations, the one declared later has higher prece-

dence.

(c) If a token is declared by %token, then it has no associativity, and its precedence level is

0 (means no precedence).

(d) If a token is declared by %left or %right, then with each declaration, the precedence is

increased by 1.

2) For rules

(a) A rule gets its precedence level from its last (right-most) terminal token.

(b) Context-dependent precedence: defined using %prec TERMINAL TOKEN, where the

TERMINAL TOKEN is declared using %left or %right earlier.

33

How conflicts are resolved using precedence and associativity

A conflict means that, for the same state, the same context symbol (lookahead), there is more

than 1 possible action to take.

1) Resolve shift/reduce conflict

E.g. a state containing the following two configurations has shift/reduce conflict over ’+’,

because it can reduce using rule 1 or shift using rule 2 upon lookahead +:

E→ E + E • {;, +} rule 1

E→ E • + E {;, +} rule 2

We define the precedence of a rule to be that of its right-most terminal.

According to the Dragon book (page 263), to choose between shift (over token a) or reduce

(by rule i), reduce if:

(a) Precedence of rule i is greater than the precedence of token a, or

(b) Token a and rule i have equal precedence, but the associativity of rule i is left. Otherwise,

use shift.

Two supplemental rules are:

(c) If either the rule or the lookahead token has no precedence, then shift by default.

(d) By default, to break ties, we chooses shift over reduce. It’s like comparing action types,

where s is favored over r.

2) Resolve reduce/reduce conflict.

The following example has r/r conflict. On ; and + this state can reduce by either rule 1 or

rule 2:

E→ E + E • {;, +} rule 1

E→ E • {;, +} rule 2

However, in principle all reduce/reduce conflicts should be studied carefully and better re-

moved.

By default, bison/yacc chooses the rule that appears first in the grammar.

3) There can be no shift/shift conflicts. Two such rules are just two core configurations of the

successor state.

34

Implementation issues

1) Get input information.

When parsing input grammar file, a) get precedence and associativity for each terminal, store

information in symbol table. b) next get precedence and associativity for each grammar rule

(that of its right-most terminal token), and store this information with each rule.

2) Solve conflicts.

Do the following when a) doing transition operation when constructing the LR(1) parsing

machine, b) combine compatible states and c) propagate context change:

For each final configuration {
Compare its context symbols to the scanned symbol of non-final

configurations for S/R conflict;
Compare its context symbols with the context symbols of another

final configuration for R/R conflict;
}

All the conflicts are resolved at the time of constructing the parsing table.

3.3.4 Error Handling

Error handling is the same as in Yacc. There are a lot of complaints about the error recovery

scheme of Yacc. But here we are concentrating on studying LR(1) algorithms, better error recovery

is not the goal of our work. Also we want to keep compatible with Yacc and Bison. For these

reasons we keep the way that Yacc handles errors.

3.4 Data Structures

The data structures should reflect the nature of the objects, and also take time and space per-

formance into consideration. Good data structures can make it easy for algorithms implementation,

enhance both efficiency and robustness.

35

These major data structures are defined for constructing the Knuth LR(1) parsing machine:

Grammar, State collection, State, Configuration, Production, Context, SymbolTblNode, HashTblN-

ode, SymbolNode, Queue, Conflict, State array.

A symbol table is implemented using hash table, and uses open hash to store elements. Symbols

with the same hash value are stored at the same array entry of the hash table, one by one as a linked

list.

This symbol table is used to achieve O(1) or close to O(1) performance for many operations. All

the symbols (terminals and non-terminals) used in the grammar file are stored in this symbol table,

and no second copy of each string is stored. All the string references are made to symbol table nodes

in the symbol table that contain the symbol strings, and string comparisons are converted to pointers

comparisons of the symbol table nodes. This saves both space and time. Besides, each symbol table

node also contains much other information about each symbol. This information is calculated at the

time of parsing the grammar file and stored for later use. The definition for a symbol table node is:

symbol value symbol type TP seq ruleIDList next ptr

Here ‘symbol’ is the actually storage location of the symbol string. ‘value’ specifies an integer

value representing this symbol to be used in the parsing table. ‘symbol type’ can be Terminal,

Non-Terminal or None. ‘seq’ specifies the parsing table column number for this symbol, so given

a symbol we immediately know which column in the parsing table it belongs to. ‘ruleIDList’ gives

the list of rules whose LHS contains this symbol. ‘next ptr’ is the pointer to the next symbol node.

‘TP’ starts for Terminal Property and is defined as:

is quoted precedence associativity

‘is quoted’ is a boolean value, means whether it is in quoted form (e.g., ‘a’ instead of a) in the

input grammar. Precedence and associativity have the standard meanings.

Linked list, statically and dynamically allocated arrays are all used. Linked lists are used where

the number of entries is not known initially and only sequential access is needed. Dynamic arrays

are used where indexed access is needed for fast retrieval. If the array is an array of objects, then

usually the type of the array is pointers to such objects, instead of the object itself. This saves space.

Static arrays are used only when the number of entry is known initially and it won’t waste much

space.

36

Sometimes linked lists and arrays are used for the same set of objects. For example, the

State collection struct stores states as a linked list of states. All the states in the parsing machine

are stored in a State collection list. However sometimes indexed access is preferred for states, so a

separate State array object is used, which is a dynamically allocated array of State pointers storing

pointers to the entries in the State collection list. Besides, to make searching states fast, a hash table

is used to store hash values of the states. Under difference circumstances different objects are used

to expedite the operations.

In the parsing table, the rows index the states (row 1 represents actions of state 1, etc.), and

the columns are the lookahead symbols (both terminals and non-terminals) upon which shift/goto/

reduce/accept actions happen. The parsing table is implemented as a one dimensional integer array.

Each entry [row, col] is accessed as entry [row * column size + col]. In the parsing table positive

numbers are for shifts, negative numbers are for reductions, -10000000 is for Accept and otherwise

0 is for errors. Assuming an integer takes 4 bytes, for a parsing machine of 1000 states and 600

symbols (terminals plus non-terminals), this can be 600 * 1000 * 4 = 2.4 MB. Usually for a grammar

of this size, about 90% of the parsing table cells would contain zeros. But today memory is cheap,

and 2.4MB is nothing. So this one-dimension array is kept for its ease of implementation. This is

how the parsing table is represented in Hyacc.

Multi-rooted trees are used when doing unit production eliminations. Binary trees are not used

since a hash table is more suitable: only insertion and find operations are needed in most cases.

There is no size limit for any data structures, they can grow until they consume all the memory.

But usually this can hardly happen. So far the largest memory usage happens for the grammar

of C++ 5.0 when no optimization is used, in which case it uses about 120 MB of memory. Most

computers today can handle that. The program, however, artificially sets an upper limit of 512

characters for the max length of a symbol. The program also sets an upper limit of 65536 for the

number of UnitProdState objects used in the unit production elimination (UPE) algorithm. Reaching

this many combined states during the UPE process usually means that some error has occured.

This is because the number of states in a parsing machine is usually in the order of thousands, and

creation of tens of thousands of combined states when removing unit productions is usually unlikely

to happen.

37

Chapter 4

LR(1) Parser Generation

4.1 Overview

Hyacc has implemented these algorithms related to LR(1) parsing:

1) The original Knuth LR(1) algorithm

2) The PGM algorithm (weak compatibility)

3) The UPE algorithm

4) Extension to the UPE algorithm

5) LR(0) algorithm

6) LALR(1) based on the first phase of the lane-tracing algorithm

7) The LR(1) lane-tracing algorithm.

There are lots of issues involved in the designs and implementations. This chapter will explain

these issues in detail.

38

4.2 Knuth’s Canonical Algorithm

4.2.1 The Algorithm

This algorithm was introduced in section 2.2.1 (on page 8). A easier to understand summary of

this algorithm is in the dragon book. According to the dragon book, the functions used in the Knuth

LR(1) parser generation algorithm are as shown in algorithms 4.1, 4.2 and 4.3 (adapted from [15]).

Two major steps are involved when generate a LR(1) parsing machine:

1) closure(): get the closure of a state

2) transition(): make a transition from a state to one of its successors.

The items() procedure is the backbone procedure of the LR(1) parser generation algorithm.

Initially state 0, which is for the goal production, is inserted into the collection C. Then function

closure() obtains all the successor configurations from the core configurations. Next transition()

makes successor states from the current state, and inserts the new states into the collection C. The

program then processes the next unprocessed state. This works in a cycle until no new states are

created.

39

Algorithm 4.1: Knuth LR(1) parser generation: function closure(I)
Input: Item set I

Output: Item set I with closure generated

repeat1

foreach item [A→ α • Bβ, a] in I do2

foreach production B → γ in G’ do3

foreach terminal b in FIRST (βa) do4

If [B → • γ, b] is not in I, add it to I;5

until I no longer changes ;6

return I;7

Algorithm 4.2: Knuth LR(1) parser generation: function transition(I, X)
Input: Item set I; Symbol X

Output: Item sets obtained by X-transition on I

Let J be the set of items [A→ α • Xβ, a] such that [A→ αX • β, a] is in I;1

return closure(J);2

Algorithm 4.3: Knuth LR(1) parser generation: procedure items(G’)
Input: An augmented grammar G’

Output: A collection C of Item sets for grammar G’

C ← {closure({[S′ → • S, $]})};1

repeat2

foreach set of items I in C do3

foreach grammar symbol X do4

if transition(I, X) is not empty and not in C then5

add transition(I, X) to C;6

until C no longer changes ;7

40

4.2.2 Implementation Issues

The algorithms 4.1, 4.2 and 4.3 only represent the big picture of the Knuth LR(1) parser gener-

ation algorithm. There are a lot of details and complications in the details. Here we talk about some

techniques used to make it more efficient.

As the big picture, a linked list is used to represent the collection C. C starts with state 0. A

pointer is used to point to the current state. More states are added to C as the transition() function

obtains successor states from an existing state. The pointer then traverses the linked list, until it

reaches the end, at which point no more states is added.

Closure: Incrementally combining new configurations

At the beginning, state S contains only core configurations. In the end it contains all the configu-

rations. A configuration is determined by three factors: the production, the marker position, and the

context set. However it is easy to see that one can combine those configurations with the same pro-

duction and marker position, and differ only by context set. We call such configurations compatible

configurations. This combination of compatible configurations will not change any characteristics

of the parsing machine. However the combination can save a lot of storage space for the state ob-

jects as well as operation time, which is easy to see even when applying the algorithm by hand.

Thus we prefer to combine it.

One straightforward way of combining compatible configurations is to do it after all the con-

figurations of a state are generated. Another way is to combine them along the way when new

configurations are generated.

It is easy to see that the second method is always faster. Assume that there are n different

configurations in a state, and m compatible configuration sets. Here a compatible configuration set

is the set of all the configurations that are compatible, i.e., differ only by context. Then using the

first method, the complexity is always O(n2). Using the second method, the complexity is about

O(m2/4). The difference is 4 ∗ (n/m)2. The ratio can be big when m is much smaller than n.

41

Table 4.1 shows the ratio 4 ∗ (n/m)2 for some grammars. The ratio can be around 400 in some

cases. That will cause a substantial difference in performance.

Grammar states n/states m/states 4 ∗ (n/m)2

Algol60 1712 141.2 13.24 454.94
C 1605 147.72 15.98 341.81
Cobol 1401 2.68 2.63 4.15
Ftp 201 1.83 1.78 4.23
Grail 719 9.11 4.49 16.47
Matlab 783 121.64 13.73 313.96
Pascal 2244 23.21 7.56 37.70

Table 4.1: The ratio 4 ∗ (n/m)2 for some grammars

Figure 4.1 is an example on state 0 of the parsing machine of grammar G3.1. On the left side is

the one without combining compatible configurations, and contains ten configurations. On the right

side is the one after combining compatible configurations, and contains five configurations only.

Figure 4.1: State 0 of the parsing machine of grammar G3.1

Below is the algorithm that implements the second method using a queue.

42

Algorithm 4.4: procedure getClosure(S)
Input: A state S with core configurations only

Output: State S with all configurations obtained

Let integer queue Q = {0, 1, 2, ..., N − 1}, where N is the number of core1

configurations in S;

while Q.count > 0 do2

i = Q.pop();3

Let the i− th configuration in S be C : [A→ α • Xβ, ω];4

if Xβ 6= ε and X is non-terminal then5

ψ = getContext(C);6

foreach production X → γ in grammar G’ do7

if ∃j, s.t. the j − th configuration of S is D : [X → • γ, φ] then8

φ = φ ∪ ψ;9

if any new symbol is added from ψ to φ, and j is not in Q yet then10

Q.insert(j);11

else12

Add a new configuration [X → • γ, ψ] to state S;13

Let j be the index of this new configuration;14

Q.insert(j);15

43

The function getContext(C) gets the context from a configuration [A→ α • Xβ, ω] to be passed

to successor configurations. Below is the function getContext(C).

Algorithm 4.5: getContext(C)
Input: Configuration C: [A→ α • Xβ, ω]

Output: Context set ψ obtained from the string βω

Let ψ = �;1

Let configuration C be [A→ α • Xβ, ω];2

if Xβ == ε then3

ψ = ω;4

else5

theads = getTHeads(β);6

if theads == � then7

ψ = ω;8

else9

if ε ∈ theads then10

ψ = ω ∪ (theads− {ε});11

else12

ψ = theads;13

return ψ;14

The function getTHeads() gets the terminal heads of a string and returns it.

One common approach to getTheads() is shown in algorithms 4.6 and 4.7.

A second approach which is faster is shown in algorithms 4.8 to 4.10. Note that in the func-

tion getTheads v2(), the step for each production S in the grammar can be expedited if we pre-

calculate for each non-terminal S the grammar productions whose LHS is S and record it. We

actually do this and record the production list for each non-terminal in the symbol node. The

function getTheads v2() thus avoid going over each production in the grammar including those ir-

relevant ones. The second approach is faster also because we separated the sets for non-terminals

and terminals, so we do not need to check terminals for successor productions, and we also do

44

not need to remove terminals from the combined set of terminals and non-terminals, like we do in

getTheads v1().

Algorithm 4.6: getTHeads v1(α)
Input: string α

Output: terminal heads list obtained from α

φ = getHeads(α);1

remove non-terminals from φ;2

return φ;3

Algorithm 4.7: getHeads(α)
Input: string α

Output: heads list (terminals and non-terminals) obtained from α

φ = �;1

foreach symbol s in α do2

φ = φ ∪ {s};3

If s is not vanishable, break out of foreach loop;4

if all the symbols in α are visited then5

φ = φ ∪ {ε};6

repeat7

foreach production A→ γ in grammar G′ do8

if A is in φ then9

foreach symbol s in γ do10

φ = φ ∪ {s};11

If s is not vanishable, break out of foreach loop;12

until no new symbol is added to φ ;13

return φ;14

45

Algorithm 4.8: getTHeads v2(α)
Input: string α

Output: terminal heads list obtained from α

φ = �;1

ψ = �;2

insertAlphaToHeads(α, φ, ψ);3

foreach symbol S in φ do4

foreach production S → γ in grammar G′ do5

insertRhsToHeads(γ, φ, ψ);6

return φ;7

Algorithm 4.9: insertAlphaToHeads(α, φ, ψ)
Input: string α, non-terminal set φ and terminal set ψ

Output: non-terminal set φ and terminal set ψ

foreach symbol S in α do1

if S is non-terminal then2

φ = φ ∪ {S};3

else4

ψ = ψ ∪ {S};5

return;6

ψ = ψ ∪ {ε};7

46

Algorithm 4.10: insertRhsToHeads(α, φ, ψ)
Input: string γ, non-terminal set φ and terminal set ψ

Output: non-terminal set φ and terminal set ψ

foreach symbol S in γ do1

if S is vanishable then2

φ = φ ∪ {S};3

else4

if S is non-terminal then5

φ = φ ∪ {S};6

else7

ψ = ψ ∪ {S};8

return;9

47

Transition: Search for existing state using a hash table of states.

Given a state in the parsing machine, we need to use the transition() procedure to get its suc-

cessor states, and then check these successor states against those already in the parsing machine.

If a successor state does not exist in the parsing machine yet, we add it to the parsing machine.

Otherwise just discard it.

Algorithm 4.11: findExistingState(S)
Input: state S

Output: state number of the found state, or -1 if not found

find a state T that is the same as S;1

if T is found then2

return the state number of T;3

else4

return -1;5

One can use a sequential search to find whether a state already exists. A faster approach is to

store references to the states in a hash table. This in concept can reduce the search cost from O(n)

to O(1).

A state can be hashed by a function of the production index (in the grammar’s production list)

and the marker position of the state’s core configurations. Let ruleID be the index of the core

configuration’s production in the grammar’s production list; let marker be the position of marker on

the core configuration’s RHS; and let H SIZE be the size of the hash table. Then a hash function

for a state can be defined as:

Algorithm 4.12: Hash function for a state S
Input: state S

Output: hash value of the state

val = 0;1

foreach core configuration r of state S do2

val = (val + r.ruleID ∗ 97 + r.marker ∗ 7 + i) % H SIZE;3

return val;4

48

In general, for a parsing machine with n states, from the first to the last state as they are added,

in average the number of searches is given by:

n∑
k=1

k

2
=
n(n+ 1)

4
(4.2.1)

Using the state hash table, for the same parsing machine, assume in average there are m states

per list, then the number of searches is given by:

(1 +m) ∗ n (4.2.2)

where the 1 is the cost of getting the hash value for a state.

For example, for the grammar of C, there are 1605 states in the Knuth canonical LR(1) parsing

machine. The above formular gives 644,407 searches. But using this state hash table, using the

above hash function, in average there are 5.02 states per list (from StateHashTbl dump() output), so

the cost is (1 + 5.02) * 1605 = 9,662. This is 644,407/9,662 = 67 times faster.

49

4.3 Pager’s Practical General Method

4.3.1 The Algorithm

This algorithm was introduced in section 2.2.4 (on page 9). This is a straightforward add on to

the backbone algorithm of the Knuth canonical LR(1) algorithm. When a new state is generated,

it is compared against all the existing states to see if it is “compatible” with an existing state. If a

match is found, the new state is merged with the compatible state.

There are two kinds of compatibility defined in [48]. The first and commonly used one is weak

compatibility. It is the default when we talk about compatibility. The second one, employing more

computation and possibly resulting in a smaller parsing machine, is strong compatibility. In our

discussion, unless specifically mentioned, compatibility always means weak compatibility.

The definition for weak compatibility [48] is given below.

Let S and S′ be two states with a common set of core configurations. Let Ur and U ′r be the r-th

core configuration of S and S′, respectively. We call S and S′ weakly compatible if and only if at

least one of the following is true for all i and j, 1 ≤ i < j ≤ n, where n is the number of core

configurations in S and S′:

1) Ui ∩ U ′j = � and U ′i ∩ Uj = �

2) Ui ∩ Uj 6= �

3) U ′i ∩ U ′j 6= �

An example of how the algorithm works in given below.

50

We just need to change the findExistingState() function at the end of section 4.2.2 (on page 48)

to add the PGM algorithm to the Knuth LR(1) algorithm:

Algorithm 4.13: findExistingState(S) for the PGM algorithm
Input: state S

Output: the state number of a same or compatible state, or -1 if not found

find a state T which is the same as S;1

if T is found then2

return the state number of T ;3

else4

find a compatible state T of S;5

if T is found then6

combineCompatibleStates(T , S);7

return state number of T ;8

else9

return -1;10

So when we run transition() on a state, we obtain a set of successor states. For each of these

successors, we need to find out if it should be inserted into the parsing machine as a new state, or if it

is already in the parsing machine, or whether there exists a compatible state in the parsing machine

that we can combine it with.

Two state states have the same production, the same marker position, and the same contexts.

Two compatible state have the same production and the same marker position, but different contexts.

51

4.3.2 Implementation Issues

The main issue here is to propagate state context change.

After combining compatible states, if the combined state has successor states, then we need to

propagate the context change to the successors. This can be a recursive procedure and is where

complications occur. This is also a computationally expensive process. But ways exist to make it

more efficient, as explained below.

One way of propagating context change is to run the closure() operation on a successor state

again when the parent state’s context has changed. The process is shown in algorithms 4.14 and

4.15. The problem with this is that one always regenerates the entire state. If only the contexts

of a small number of configurations are changed, then we will need a lot of extra work on those

configurations without change.

We can do it in a more efficient way by propagating context changes only on those configu-

rations whose contexts actually change, thus only affected successor states are updated. This is

combineCompatibleStates v2() as shown in algorithms 4.16, 4.17 and 4.18. A queue is used to

store the index of those configurations that are actually changed. Then when propagating to suc-

cessor states, we only check those configurations on the queue. This way we can save computation

time.

52

Algorithm 4.14: combineCompatibleStates v1(S, S′)
Input: Destination state S, source state S′

Output: The combined state S

is changed = false;1

foreach pair of corresponding core configurations C in S and C’ in S’ do2

combine the context of C’ to the context of C;3

if the context of C is changed then4

is changed = true;5

if is changed == true then6

get closure on state S;7

propagateContextChange v1(S);8

Algorithm 4.15: propagateContextChange v1(S)
Input: state S

Output: context change of state S is propagated to its successor states

is changed = false;1

foreach successor state T of state S do2

foreach core configuration C of T do3

find the corresponding configuration C’ in S’;4

combine the context of C’ to the context of C;5

if the context of C is changed then6

is changed = true;7

if is changed == true then8

get closure on state S;9

propagateContextChange v1(S);10

53

Algorithm 4.16: combineCompatibleStates v2(S, S′)
Input: Destination state S, source state S′

Output: The combined state S

is changed = false;1

config queue = �;2

foreach pair of corresponding core configurations C in S and C’ in S’ do3

combine the context of C’ to the context of C;4

if the context of C is changed then5

is changed = true;6

Let i be the index of C in the configuration list of S;7

queue push(config queue, i);8

getConfigSuccessors(S);9

if is changed == true then10

propagateContextChange v2(S);11

Algorithm 4.17: propagateContextChange v2(S)
Input: state S

Output: context change of S is propagated to its successor states

is changed = false;1

config queue = �;2

foreach successor state T of state S do3

foreach core configuration C of T do4

find the corresponding configuration C’ in S;5

combine the context of C’ to the context of C;6

if the context of C is changed then7

is changed = true;8

Let i be the index of C in the configuration list of S;9

queue push(config queue, i);10

getConfigSuccessors(T);11

if is changed == true then12

propagateContextChange v2(S);13

54

Algorithm 4.18: getConfigSuccessors(S)
Input: state S

Output: context change of the configurations in the config queue are propagated to

successor configurations

while config queue.count() > 0 do1

C = config queue.pop();2

Let C be in the format [A→ α • Xβ, ω];3

if Xβ 6= ε and X is non-terminal then4

ψ = getContext(C);5

foreach production X → γ in grammar G′ do6

if ∃ j, s.t. the j-th configuration of S is D : [X → • Y γ, φ] then7

φ = φ ∪ ψ;8

if any new symbol is added from ψ to φ, D is not final9

configuration, Y is not terminal, and j /∈ config queue then

config queue.insert(j);10

else11

add a new configuration [X → • γ, ψ] to state S;12

let j be the index of this new configuration;13

config queue.insert(j);14

55

4.4 Pager’s Unit Production Elimination Algorithm

4.4.1 The Algorithm

Abundant existence of unit productions would unnecessarily increase parsing table size and

waste parsing time, sometimes by 20∼30%. There have been proposed algorithms on eliminating

unit productions from different researchers.

Pager’s unit production elimination algorithm is described in [46]. It is applied after the PGM

algorithm to further reduce the state space to achieve a more compact parsing machine. However,

this should not be the final restriction as to where it can be applied. For example, it should be ok to

apply it to a LALR(1) parsing machine obtained using a LALR(1) algorithm.

A unit production is defined as a production x → y where both x and y are single symbols. A

leaf is defined as a symbol that only appears on the RHS of any unit production but never on the

LHS of any unit production.

As in [46], the algorithm is composed of 5 rules:

1) For each state S of the parsing machine (including new states added in step 2), and for each

leaf x where the x-successor of S contains a unit reduction, do step 2. Go to step 3 after finish.

2) For 1 ≤ i ≤ n, let xi be the symbols such that xi V x (including x itself), and for which

shift/goto actions are defined at state S. Let the xi-successor of S be Ti. If any state R is

or at a earlier time has been a combination of states T1, . . ., Tn, then let R be the new x-

successor of state S; otherwise combine states T1, . . ., Tn into a new state T and make T the

new x-successor of S.

3) Delete all such transitions where the transition symbol is on the left-hand side of a unit pro-

ductions.

4) Delete all states that now can not be reached from state 0.

5) Replace all such reductions y → w by x→ w, where y is the left-hand side symbol of a unit

production, and x is a randomly selected leaf such that y V x.

56

Example. Use grammar G3.1 (on page 26). Its parsing machine is shown in Figure 3.4. An

example is given for this in Figure 4.2. First we need to find the leaves of the grammar. This is

achieved by constructing a multi-rooted tree, which isE → T → a for G3.1. So a is the only leaf in

this case. Then following the algorithm rule 1, we see that only states 0 and 4 have a-successor that

has a unit production: state 0’s a-successor state 3 has a unit production T → a, state 4’s a-successor

is also state 3. Thus we follow rule 2 to combine successor states of state 0 and state 4. These are

shown in steps (b) and (c) in Figure 4.2. Next, step (d) follows rule 3, step (e) follows rule 4, and

step (f) follows rule 5 and also rearranges the states in a better-looking configuration.

57

Figure 4.2: Unit Production Elimination on the parsing machine of grammar G3.1

(a) Original parsing machine. (b) Combine states 1, 2 and 3 to state 8. Remove link 0→ 3 because

there can be only one a-successor for state 0. (c) Combine states 3 and 6 to state 9. Remove link 4

→ 3 because there can be only one a-successor for state 2. (d) Remove transitions corresponding

to LHS of unit production: E, T. (e) Remove all states unreachable from state 0, and remove their

associated action links. (f) Replace LHS of reductions to corresponding leaf.

58

4.4.2 Implementation Issues

Implementation using the parsing table

The unit production elimination procedure seems complicated in the parsing machine automata.

However it is easy to manipulate the parsing table to achieve the same effect.

Figure 4.3 is an example showing this process.

(a) shows the original LR(1) parsing table.

(b) and (c) shows how to combine states 1, 2 and 3 into state 8, and combine states 3 and 6

into state 9. The unit productions associated with states 2 and 3 are replaced by accept, shift and

non-unit production reduction actions of other states in the combination process. The combination

is done by copying actions of an old state into the combined state. If an action already exists at

a location, then ignore the one that belongs to the unit production. A concern may be raised that

two actions that both are not unit-productions may get in conflict. Such situation can never happen.

Seen Theorem 4.4.1 and its proof (on page 61).

(d) removes transitions corresponding to LHS of unit productions. This is equivalent to remove

goto actions of all non-terminals that are parent nodes in the multi-rooted tree. It can be noted that

new combined states will not have such goto actions, and so can save the work on new combined

states. As a matter of fact, this step is not even necessary for a parsing table implementation, because

after getting all the parent symbols we can just ignore to output their action when writing the final

parsing table.

(e) remove all states unreachable from state 0 and associated links. This is easily done by

starting from state 0, recursively find those reachable states, then remove states(rows) not on the list

from the parsing table. Again, the only thing we actually need is to find those reachable states and

we don’t really need to remove the rows corresponding to the unreachable states. We can just ignore

these rows when writing the final parsing table.

(f) The last step is not conducted on the parsing table, but on the grammar rules data structure.

This step is also not necessary, since in the parse engine those LHS symbols just serve as place

holders when popping symbols from the symbol stack upon reductions. This step is conducted only

to show the change to the human reader.

59

Figure 4.3: Applying Unit Production Elimination on the parsing table

60

Theorem 4.4.1. In the parsing table implementation of unit production elimination, assume T1,

T2, . . . , Tn are the successor states of state S by transition of tokens x1, x2, ..., xn respectively,

where we have the unit production relationship: x1 ⇒ x2 ⇒ · · · ⇒ xn Then any two of the states

T1, T2, . . . , Tn will not have the same action on the same token.

Proof. Assume two states Ta and Tb have the same action on the same token y. Let the transition

symbol from S to Ta be xa, and the transition symbol from S to Tb be xb, as shown in Figure 4.4.

Let’s also assume that the relationship between xa and xb is xa ⇒ · · · ⇒ xb. Then the input

string α • xbyβ, where α is the string before the marker •, and b is the scanned symbol, will have

a shift/reduce conflict here. This is because we can shift by xb to state Tb, then shift be action y,

but we can also reduce following the relationship chain xa ⇒ · · · ⇒ xb to obtain α • xayβ, then

shift by xa to state Ta, and then shift by action y. However, the condition that the unit production

elimination algorithm can be applied is that the grammar is a LR(1) grammar, and no shift/reduce

conflict can exist in a LR(1) grammar’s parsing machine. This shows that our assumption that the

two states Ta and Tb have the same action on the same token y is invalid.

Figure 4.4: Assume states Ta and Tb have the same action on token y

61

A conclusion that can be derived from Theorem 4.4.1 is: In the parsing table implementation

of the unit production elimination, for those successor states obtained from a state by transitions

by symbols involved in a chain of unit productions, we can combine these successor states without

worrying about conflicts caused by different actions (neither is a unit-production reduction, since if

one is then we can use the other for the action under this token) under the same token.

Implementation algorithms on parsing table

This section shows the actual algorithms in the implementation. These algorithms manipulate

the parsing table, as shown in Figure 4.3 (on page 60).

Algorithm 4.19 shows the entire UPE flow process.

Algorithm 4.20 shows how to build the multi-rooted tree. A way of constructing a multi-rooted

tree is used to find out all the leaves in a grammar. To implement this data structure, an array MRT

is used. MRT is an array of leaf nodes. Each leaf has a pointer that points to its parent nodes, if any.

Algorithm 4.21 shows the first two steps in UPE algorithm. These two can’t be separated actu-

ally.

Algorithm 4.22 shows step 3 in UPE algorithm.

Algorithm 4.23 shows step 4 in UPE algorithm.

Algorithm 4.24 shows step 5 in UPE algorithm.

62

Algorithm 4.19: UPE()
Input: The parsing table of a grammar G′

Output: The parsing table with unit productions eliminated

build multi rooted tree();1

UPE step1and2();2

UPE step3();3

UPE step4();4

UPE step5();5

Algorithm 4.20: build multi rooted tree()
Input: grammar G′

Output: A multi-rooted tree MRT built from the unit productions of G′

Let MRT be the multi-rooted tree, which is empty at the beginning;1

foreach grammar rule r : [X → Y] in G′ do2

if r is a unit production then3

nLHS← the node for symbol X in the MRT;4

nRHS← the node for symbol Y in the MRT;5

if only node nLHS is found then6

Insert Y to MRT as a child of node X;7

else if only nRHS is found then8

Insert X to MRT as a parent of node Y;9

else if both nLHS and nRHS are NOT found then10

Insert X and Y to MRT as a new tree, X is the parent of Y;11

else12

Insert the parent/child relation of X and Y in MRT;13

63

Algorithm 4.21: UPE step1and2()

foreach state S in the parsing table do1

foreach leaf x in the multi-rooted tree MRT do2

find the set T of successor states of S, where each state in T is a y-successor3

of S, where y is a parent node of leaf x;

if T 6= � then4

let R be the state combined from states in T;5

if R does not exist then6

create a new state R, which is obtained by combining states in T;7

insert actions of states in T to R in the parsing table;8

Algorithm 4.22: UPE step3()

foreach row in the parsing table do1

foreach non-terminal Y do2

if Y is a parent node in the multi-rooted tree then3

clear the goto action on Y;4

Algorithm 4.23: UPE step4()

allocate an empty array ReachableStates[];1

put each shift action target state of state 0 to ReachableStates[];2

while next state S in ReachableStates[] exist do3

foreach shift action target state T of state S do4

if T is not in ReachableStates[] then5

add T to the end of ReachableStates[];6

go through the parsing table, label each state not in ReachableStates[] as removed;7

64

Algorithm 4.24: UPE step5()

foreach grammar rule r in grammar G′ do1

if r is unit production: [X → Y] then2

if X is a parent in the multi-rooted tree then3

change X to an associated leaf symbol;4

65

4.5 Extension To The Unit Production Elimination Algorithm

4.5.1 Introduction and the Algorithm

It can be noted that after removing unit productions, the parsing machine can possibly con-

tain repeated states (with the same actions). These repeated states can be combined to result in a

more compact parsing machine. This is a natural extension of Pager’s unit production elimination

algorithm.

Definition 4.5.1. Same-action states are those states in a parsing machine that have exactly the

same actions (accept, shift, goto and reduce) on each token symbol (including both terminals and

non-terminals).

The following is the algorithm to remove redundant copies of same-action states, which is an

extension to the unit production elimination algorithm.

Algorithm 4.25: UPE Ext()
Input: Parsing Machine M

Output: A parsing machine M’ where all the same-action states in M are removed

let Shift(X, k)→ Y be a Shift transition from state X to state Y on token symbol k;1

foreach state S in M do2

find the set Σ of all the same-action states of state S;3

foreach state S′ in Σ do4

foreach Shift(R, k)→ S’ in M do5

replace it by Shift(R, k)→ S;6

end7

end8

remove Σ from M ;9

end10

In practice, this algorithm is O(1) in space and does not increase the amount of memory used,

since it operates on the existing parsing machine. But it takes quite a large percentage of the execu-

tion time, because it looks through each entry of the entire parsing table for each state. The worst

66

time performance is O(n2 ∗ m), where n is the number of states, and m is the number of tokens

(both terminals and non-terminals).

Derivation of O(n2 ∗m) using the best implementation scenario: the step of finding the set of

all the same-action states can be done in O(n) time by inserting all states into a hash table based

on its actions. Since each state has m actions, this actually is O(n ∗ m). Then for the next step

of replacing relevant transitions, assume those same-action states are {Si|i ∈ [0, n]}, assume the

number of actions transit to Si is Xi, it is obvious that in the worst case all the other states transit to

Xi and all the actions of each state transit to Xi (although that is unlikely in practice), so:

0 ≤ Xi ≤ n ∗m (4.5.1)

then the number of transitions to replace is

0 ≤ X1 + . . .+Xk ≤ n ∗ (n ∗m) (4.5.2)

thus

O(n ∗m+ n ∗ (n ∗m)) = O(n ∗m ∗ (1 + n)) = O(n2 ∗m). (4.5.3)

This is the theoretical upper bound, which happens when in the parsing machine each state transits

to all the other states for all the lookaheads. This is impossible in practice. A empirical study maybe

can be used to show the situation in practice.

One concern of the unit production elimination algorithm is that it was designed for LR(k)

grammars. For non-LR(k) grammars, more conflicts, including shift/shift conflicts, can be derived.

Under such situations, the unit production elimination algorithm and this extension should not be

used.

Example. Given grammar G4.1 [41]:

S→ d i A
A→ A T | ε
T→M | Y | P | B
M→ r | c
Y→ x | f
P→ n | o
B→ a | e

In Figure 4.5 (on page 69), (a) is the parsing machine obtained using the practical general method,

(b) is the parsing machine after applying the unit production elimination algorithm based on (a),

67

(c) is the parsing machine after applying the extension to the unit production elimination algorithm

based on (b). In (b), states 18 to 25 all have the same action A → AT for each of the lookahead

symbols in Σ = {a, c, e, f, n, o, r, x,a} Thus states 18 to 25 are same-action states and they can be

combined into one state, i.e., state 18 in (c).

In this example, the parsing machine in (a) has 18 states, in (b) has 13 states, and in (c) has only

6 states. So by applying the extension algorithm after the unit production elimination, (13-6) / 13

= 54% reduction in parsing machine size is achieved.

The following table compares the number of states, shift/goto, reduction and accept actions in

the parsing machine after applying each of the practical general method (PGM), unit production

elimination (UPE) and UPE extension (UPE Ext) algorithms.

state shift/goto reduction accept
(a) PGM 18 17 15 1
(b) UPE 13 12 10 1
(c) UPE Ext 6 5 3 1

Example. Given grammar G4.2 [41]:

E → E + T | T
T → a | n | (E)

Figure 4.6 (on page 70) shows the parsing machines. The LR(1) Parsing machine is in (a). The

parsing machine after applying UPE algorithm is (b). Obviously states 10 and 11, 12 and 13, 14

and 15 are identical pairs because they have the same actions, and can be combined together. The

parsing machine after applying UPE Ext algorithm is (c). The following table compares the number

of states, shift/goto, reduction and accept actions in the parsing machine after each step.

state shift/goto reduction accept
(a) PGM 10 17 5 1
(b) UPE 10 16 3 2
(c) UPE Ext 7 9 2 1

Thus we see substantial decrease in the number of states, transitions and reductions in the LR(1)

parsing machine by using the UPE Ext algorithm.

68

Figure 4.5: Remove same-action states after unit production elimination

69

Figure 4.6: Apply UPE and UPE Ext on Grammar G4.2

70

4.5.2 Implementation Issues

Implementation can be on the level of 1) the parsing machine automata, or 2) the parsing table.

It was found that manipulating the parsing table is easier. In Hyacc since the UPE algorithm was

implemented by manipulating the parsing table, the extension algorithm to UPE is also implemented

this way. The alternative of working on the level of the parsing machine automata, however, can

possibly be more efficient from a high level point of view.

If the implementation uses the parsing table, then another optimization can be used. It seems

that all same-action states are adjacent to each other (rows adjacent in the parsing table). Using this

observation, it is faster to go through the cycle.

To see the validity of this optimization, we need to check how same-action states happen. In our

examples, such same-action states come from grammar rules like this: X → t1 | t2 | ... tn, where

ti is a terminal symbol, i = 1, 2, ... n. Since the UPE algorithm first builds a multi-rooted tree and

then combines states involved in unit productions in a round-robin approach (Algorithm 4.21), that

procedure results in the occurrence of same-action states, and same-action states obtained this way

are always adjacent to each other. So far this is the only source of same-action states we know.

There is no way to rule out other possible sources of same-action states so far, but such situation

should be rare. This is because same-action states have the same actions usually because they have

the same set of (core) configurations, which is the case for same-action states obtained in the UPE

procedure above (such resulted same-action states actually are different by the ti symbols in the

configurations, but such ti symbols can all be replaced by X). Otherwise states with the same set of

(core) configurations would have been combined in the PGM algorithm. If two states have different

sets of (core) configurations but the same actions, that is quite unusual. Therefore we argue that

even though there is no way to rule out other sources of same-action states, the UPE procedure

should be the primary source of same-action states, if not the only source.

Now refer back to Algorithm 4.25 (on page 66), taking advantage of the adjacency property of

same-action states, the cost savings is in line 3: ”find the set Σ of all the same-action states of state

S”. Previously we needed to search through the entire parsing table (at least from the current row to

the end of the parsing table), but now only need to check the next few rows (from the current row

on until the next different row). This does not change the O(n2 ∗m) nature since line 3 is not the

dominant operation in determining the cost, but it does help.

71

4.6 Pager’s Lane-tracing Algorithm

4.6.1 The Algorithm

The lane-tracing algorithm was introduced in section 2.2.3 (on page 9). It contains two phases,

as shown in Figure 4.7. The first phase starts from inadequate states (contains reduce/reduce con-

flicts) in the LR(0) parsing machine, and traces back the configurations until a configuration where

only non-NULL contexts are generated. Phase 1 ends up with a LALR(1) parsing machine. If this

resolves the reduce/reduce conflicts then we stop here. Otherwise, the second phase is used to split

states to resolve the conflicts, and results in a LR(1) parsing machine.

Figure 4.7: The Two Phases of Lane-Tracing Algorithm

The lane-tracing algorithm can also be shown by the following pseudo-code:

Algorithm 4.26: lane tracing()

lane tracing phase1();1

resolve LALR1 conflicts();2

if not all inadequate states are resolved then3

lane tracing phase2();4

resolve LALR1 conflicts();5

The lane tracing phase1() function just does lane tracing. This is followed by a call to the

function resolved LALR1 conflicts() to resolve reduce/reduce conflicts according to the generated

context during the lane-tracing process. When this is done, we check if there are still any unresolved

states that contain reduce/reduce conflicts. If so we go ahead with lane tracing phase2(), at the end

of which we make another call to resolve LALR1 conflicts().

The algorithm used in the first phase is thoroughly discussed and presented in [47]. But the

second phase is only briefly mentioned in the same source. This work implemented the second

phase using two approaches, which are discussed in details here.

72

It should be noted that the dragon book describes two ways of generating an LALR(1) parsing

machine. The lane-tracing algorithm phase 1 (here it is the call to lane tracing phase1() followed by

a call to resolve LALR1 conflicts()) does the same thing. But this fact seems to have been ignored

by most literature. This work implements LALR(1) in Hyacc using phase 1 of the lane-tracing

algorithm. The result on parsing grammars is compared to Bison (see Chapter 5) and shows the

same outcome, which validates this approach.

4.6.2 Lane-tracing Phase 1

The Phase 1 algorithm basically creates a LALR(1) parsing machine based on the LR(0) parsing

machine, and find out the lanes that trace back to the states where conflicting contexts are generated.

The paper [47] is a pretty good summation of the algorithm. It lacks details on Phase 2 of lane-

tracing though, which will be discussed in the next section.

Example. Given grammar G4.3 [45]:

E→ a A d | b A c | a B c | b B d
A→ e A | e
B→ e B | e

The LR(0) parsing machine is shown in Figure 4.8:

In state 6, final configuration 1 [A→ e •] and final configuration 3 [B → e •] both reduce. It is

a reduce/reduce conflict. Thus we need to trace back these two configurations to generate contexts

for them.

How we trace these two configurations are shown in Figure 4.9, where (a) shows the lanes

generating contexts for [A → e •], and (b) shows the lanes generating contexts for [B → e •]. Use

(a) as example. In state 2, configuration 1 in state 6 can be traced back to its originator in state

2, which is configuration 4 in state 2 ([A → • e]). In state 2, configuration 4 does not generated

any contexts, so we trace back to configuration 1 ([E → a • A d]), which has string “d” after

scanned symbol A and generates context set {d}. So we stop tracing here, and add context {d}
to configuration 4, which then propagates to configuration 1 in state 6. Another lane traces back

to configuration 1 in state 3, which generates the context set {c}. As the result of lane-tracing,

configuration 1 in state 6 now has context set {c, d}. Similarly, configuration 3 in state 6 has context

set {c, d} after lane-tracing.

73

Figure 4.8: LR(0) parsing machine for grammar G4.3

Figure 4.9: Lane tracing on conflict configurations

74

After tracing using the phase 1 algorithm, the LALR(1) parsing machine we obtain is shown in

Figure 4.10 (only relevant states are shown, the rest ignored as they keep the same). Now that in

state 6 both configurations 1 and 3 have the same context set {c, d}, the reduce/reduce conflict still

exist. So we need to go to phase 2 of the lane-tracing algorithm to see if it is possible to resolve this

conflict by splitting states.

Figure 4.10: LALR(1) parsing machine for G4.3 generated by lane tracing

75

4.6.3 Lane-tracing Phase 2

The purpose of phase 2 is to split the states that cause the reduce/reduce conflicts. There are two

approaches for this as discussed here. The first is based on the practical general method (PGM) as

suggested in [47]. The second is based on a lane-tracing table, which is a table constructed from the

conflicting lanes [50].

Phase 2 process is:

Algorithm 4.27: lane tracing phase 2()

get LaneHead list();1

phase2 PGM() or phase2 laneTable();2

4.6.4 Lane-tracing Phase 2 First Step: Get Lanehead State List

The first step of phase 2 is to get the lanehead state list.

After phase 1, we have obtained a parsing machine with conflict states. Then we need to find out

a list of states, from which lanes start and eventually lead to the unresolved states. We need to find

out these states, because then we need to regenerate the involved states to remove the reduce/reduce

conflicts.

We obtain these lane head states by tracing back conflicting lanes a second time. Actually a

list of the lane head states can be obtained in phase 1 tracing. The reason we do not do it there but

now, is that we don’t know back then which lane head states eventually lead to inadequate states.

Suppose there are 1000 inadequate states at the beginning, there could be 2000 lane head states for

all these inadequate states. But 999 of these inadequate states are resolved after phase 1, with only

one inadequate state left and 2 lane head states lead to this inadequate state. It is quite obvious that

we only need these 2 lane head states and can ignore the other 1998. It is true that by getting lane

head states a second time can double the computation, but it is at most twice as expensive. Besides

the fact that the second trace may work on a fewer number of states, the second trace back also can

take advantage of the first one: we can mark those configurations where traces end and don’t need

a second computation on the contexts to determine if we need to stop tracing at a configuration.

76

Algorithm 4.28: get laneHead list()

foreach state s with reduce/reduce conflict do1

let A = getStateConflictLaneHead(s);2

laneHead List = laneHead list ∪ A;3

remove pass thru states from laneHead list;4

Algorithm 4.29: getStateConflictLaneHead(S)
Input: state S

foreach final configuration C of state S do1

trace back(NULL, c);2

Algorithm 4.30: trace back(o, c)
Input: Configuration c; An originator configuration of c: o

c.LANE CON = 1;1

if c.LANE END == true then2

add c’s owner state to laneHead list;3

return laneHead list;4

else if c has no originators then5

return laneHead list;6

else7

foreach originator o of c do8

set transitors pass thru on(c, o);9

if o.LANE CON == 0 then10

if c.owner != o.owner then11

c.owner.PASS THRU = 1;12

trace back(c, o);13

return laneHead list;14

77

Algorithm 4.31: set transitors pass thru on(cur config, o)
Input: Current configuration cur config; Originator configuration o

Output: Each intermediate state is labeled as PASS THRU

foreach transitor c of cur config do1

if c is one of the originators of o then2

LT tbl entry add(c.owner, cur config.owner);3

if c.owner != cur config.owner AND c.owner != o.owner then4

c.owner.PASS THRU = 1;5

set transitors pass thru on(c, o);6

if o.owner == cur config.owner then7

getTheContext(o);8

78

4.6.5 Lane-tracing Phase 2 Based on PGM

Once the lanehead state list is obtained, regenerating states seems mechanical. The idea is to

start from lanehead states, regenerate those states on the conflicting lanes. Note there is no need to

regenerate states not on the conflicting lanes. Conflicting lanes are those lanes we traced in phase

1. When new states are generated we combine them using the PGM algorithm.

The algorithm Phase2 PGM() below gives the procedure.

Algorithm 4.32: Phase2 PGM()
Input: laneHead list

foreach state s in laneHead list do1

getClosure(s);2

updateStateReduceAction(s);3

coll = getStateSuccessors(s);4

foreach state Y in coll do5

let Y0 be the original corresponding successor of s;6

if Y0.PASS THRU == TRUE then7

if Y0.regenerated == false then8

regenerateStateContext(Y0, Y);9

let Y0.regenerated = true;10

If Y0 is not in laneHead list, add it to laneHead list;11

else12

if Y0 and Y are weakly compatible then13

combine context of Y0 to Y;14

add Y0 to laneHead list if not yet on the list;15

else16

add new split state Y to the entire states list;17

if any new state was added to the state list then18

do PGM on these new states;19

An example is given below.

79

Example. For grammar G4.3, after lane-tracing phase 1 we have obtained the LALR(1) parsing

machine as shown in Figure 4.8 (on page 74). Now we need to split states based on the PGM

algorithm. We already obtained the set of lane head states, which is {2, 3}. Following the algorithm

Phase2 PGM, the following steps apply:

At the beginning, the laneHead list is {2, 3}. The set of states that are on the conflicting lanes

(where PASS THRU is on) is φ = {2, 3, 6}.

Step 1. Get state 2 from lanehead list. Get its closure:

Then we get the successors of state 2 on tokens A, B and e. Only e successor state 6 is on

conflicting lane. At this time state 6’s regenerated label is off, so we regenerate its context to

replace the old state 6, and set its regenerated label on. Since it is not in the lanehead list, we add

state 6 to lanehead list.

Now lanehead list is {2, 3, 6}.

80

Step 2. Get the next state 3 from laneHead list, and get its closure:

Then we get the successors of state 3 on tokens A, B and e. Only e successor state 6 is on

conflicting lane. At this time the regenerated label of state 6 is on, so we check if 3’s e successor

is compatible with the regenerated state 6. We find the answer is no. So we have to make the e

successor of state 3 a new state and insert it in the state list. The new state is the 15th state, so we

label it as state 15. Now lanehead list is {2, 3, 6}.

Step 3. Get the next state 6 from lanehead list, and get its closure. Here it has no change. In

other cases, it is possible that there are compatible states combined into it, so the context will change

after getting closure. State 6 has successors on tokens A, B and e. Only the e successor is in the

conflict lane, which is state 6 itself. Since the regenerated label is on, we check if the new copy of

state 6 is compatible with state 6. Since it is compatible, we combine them (actually no change in

this case). Since state 6 is already in lanehead list, we don’t insert it again.

At this time the lanehead list is exhausted, so we exit the loop on lanehead list.

81

Step 4. Next we need to apply the PGM algorithm on the new states added to the state list. We

have added one such state, which is state 15. After applying the PGM algorithm, we obtain the

following state machine. Here the A and B successors of state 15 are the same as those of state 6.

82

4.6.6 Lane-tracing Phase 2 Based on A Lane-tracing Table

Lane-tracing based on a lane-tracing table is another way of splitting states to remove inadequate

states. The idea is that, using the lane-tracing table constructed here, we check the local context

information of the regenerated state group to see if there is a need to split. The following algorithm

is derived from [50].

Algorithm

Let the actions of the state considered, where conflicts occur, be π1, π2, . . . , πr. If a state S

contains configurations that for 1 ≤ i ≤ r, generate a set of contexts Ci along a lane leading to πi,

then the collection of contexts generated by S is defined as the set {(Ci, i)|1 ≤ i ≤ r}.

Note that if the sets {Ci|1 ≤ i ≤ r} are not pairwise disjoint, then the grammar is not LR(1).

The collection of contexts associated with any state S is initially the collection of contexts it

generates.

The manner in which regenerated states are combined is as follows.

Let {S1, . . . , St} be a set of connected regenerated states, and let the same collection of contexts

associated with each of S1, . . . , St be {(Ai, i)|1 ≤ i ≤ r}. If we now regenerate a state T that is a

successor of one of S1, . . . , St, then:

1) If there is an existing copy of state T whose associated collection of contexts is {(Bi, i)|1 ≤
i ≤ r} and the collection {(Ai ∪ Bi)|1 ≤ i ≤ r} are pairwise disjoint, then this exist-

ing copy of state T is taken as the successor, and the collection of contexts associated with

{S1, . . . , St, T} is defined to be {(Ai ∪Bi, i)|1 ≤ i ≤ r}.

2) Otherwise, a new copy T ′ of T is regenerated as the successor, and if the collection of con-

texts generated by T is {(B′i, i)|1 ≤ i ≤ r}, then the collection of contexts associated with

{S1, . . . , Sr, T
′} is defined to be {(Ai ∪B′i, i)|1 ≤ i ≤ r}.

Note that if the sets {(Ai ∪B′i, i)|1 ≤ i ≤ r} are not pairwise disjoint, then the grammar is not

LR(1).

83

Example. This example is from [50]. Given grammar G4.4:

G→ x W a | x V t | y W b | y V t | z W r | z V b | u U X a | u U Y r
W→ U X C
V→ U Y d
X→ k t U X P | k t
Y→ k t U Y u | k t
U→ U k t | s
E→ a | b | c | v
C→ c | w | ε
P→ ε

The states involved in the conflicting lanes are as shown in Figure 4.11.

84

Figure 4.11: Grammar G4.4: states on the conflicting lanes

85

Figure 4.12 is a depiction of the states involved in traced lanes and how they are connected to

each other. The lanes are shown in the forward direction.

Figure 4.12: Grammar G4.4: conflicting lanes traced in lane-tracing

The information collected is stored into a lane table as in Table 4.2.

State π1 π2 π3 Connected to
B * k a {G}
C * k b {G}
D * k r {G}
E * k {F}
F r a {H}
G d c, w {H}
H {I}
I * k {J}
J u {H}

Table 4.2: Grammar G4.4: lane table constructed in lane-tracing

* : means lanes start, but does not pass through the state involved.

86

The example of combining regenerated states is given below.

The example sequence of regeneration shown is one where the states along the lanes from state

D are regenerated last, as this best illustrates the algorithm. Note that no states other than states B,

C, . . . , J are regenerated. For example, the X and Y successors of all the copies of state J are the

original X and Y successors of the original state J.

Step 1: Initially show the collection of contexts associated with each state (i.e., the collection of

context generated by the state).

Step 2: Start from state B, first add state G to the collection.

The collection of contexts associated with {B, G}: ({k}, 1), ({d}, 2), ({a, c, w}, 3).

Step 3: Add the successor of state G: state H.

The collection of contexts associated with {B, G, H}: ({k}, 1), ({d}, 2), ({a, c, w}, 3).

87

Step 4: Add the successor of state H: state I.

The collection of contexts associated with {B, G, H, I}: ({k}, 1), ({d}, 2), ({a, c, w}, 3).

Step 5: Add the successor of state I: state J.

The context sets associated with {B, G, H, I, J}: ({k}, 1), ({d, u}, 2), ({a, c, w}, 3).

Step 6: Add the successor of state J: state H. State H is already in the set.

The context sets associated with {B, G, H, I, J}: ({k}, 1), ({d, u}, 2), ({a, c, w}, 3).

88

Step 7: State H is already in this set of states. So find the next state after B in the table and see if

it’s possible to add it to this set of states, which is state C.

The context sets associated with {B, C, G, H, I, J}: ({k}, 1), ({d, u}, 2), ({a, b, c, w}, 3).

Step 8: Successor state G of state C is in this set of states already. So find the next state after C in

the table and see if it’s possible to add it to this set of states, which is state D.

The context sets associated with {B, C, D, G, H, I, J}: ({k}, 1), ({d, u}, 2), ({a, b, c, r, w}, 3).

Step 9: Successor state G of state D is in this set of states already. So find the next state after D in

the table and see if it is possible to add it to this set of states, which is state E. But adding E to this

set will cause a conflict in the associated context sets. So E must be put into a new set of states.

The collection of contexts associated with {E}: ({k}, 1).

89

Step 10: Add the successor of state E: state F. The collection of contexts associated with {E, F}:
({k}, 1), ({r}, 2), ({a}, 3).

Step 11: Add the successor of state F: state H. Now state H is already in the first set of states. So

adding H to the current set of states means we need to combine the new set of states with the old

one. But then the combined contexts is: ({k}, 1), ({d, r, u}, 2), ({a, b, c, r, w}, 3). This is not

pairwise disjoin because “r” is in sets for configurations 2 and 3. So we have to keep the current set

separate from the old one, and create a copy of state H to insert into the new set.

The collection of contexts associated with {E, F, H’}: ({k}, 1), ({r}, 2), ({a}, 3).

Step 12: Add the successor of state H’, which is I. Similarly, we have to create a copy of state I

to insert into the new set to avoid merging with the old set, which causes the failure of pairwise

disjointness of the context sets.

The collection of contexts associated with {E, F, H’, I’}: ({k}, 1), ({r}, 2), ({a}, 3).

90

Step 13: Add the successor of state I’, which is J. For the same reason, we need to create a copy of

J.

The collection of contexts associated with {E, F, H’, I’, J’}: ({k}, 1), ({r, u}, 2), ({a}, 3).

Step 14: Add the successor of state J’, which is H. For the same reason, we need a copy of H. But

there exists a copy of H in this set already, so we just use it.

The collection of contexts associated with {E, F, H’, I’, J’}: ({k}, 1), ({r, u}, 2) ({a}, 3).

So finally the result of combining the regenerated states is:

91

Implementation

In the implementation, these procedures are used:

Algorithm 4.33: phase2 laneTable()

all clusters = � ;1

foreach entry e in LT tbl do2

if e.processed == false then3

new cluster = cluster create(e);4

clear regenerate(e.from state);5

let e.processed = true;6

is new chain = cluster trace new chain all(e.from state, e);7

if is new chain == true then8

add new cluster to the all clusters list;9

Algorithm 4.34: cluster trace new chain all(parent state, e)
Input: state parent state; LT tbl entry e

let is new chain = true;1

foreach state s in the to states list of e do2

val = cluster trace new chain(parent state, s);3

if ret val == false then4

is new chain = false;5

return is new chain;6

92

Algorithm 4.35: cluster trace new chain(parent state, s)
Input: state parent state; state s

let c be the current new cluster;1

let is new chain = true;2

find the entry e for s in LT tbl;3

let e ctxt be the associated context sets of e, or null if e is not found;4

let ret state be the copy of s (original s or its split copy) contained in c;5

if ret state exists then6

inherit propagate(ret state, parent state, new cluster, e);7

replaceSuccessor;8

return true;9

else10

in the all clusters list, search for a cluster ’container’ that contains s or its split11

copy;

if container is found, and it and new cluster are pairwise disjoint in context then12

combine container into new cluster;13

is new chain = false;14

set new cluster = container;15

else16

// A context-pairwise container is not found;17

if a non-context-pairwise container exist then18

make a copy of s and add it to new cluster;19

clear inherit regenerate;20

else21

// s is not in any cluster yet;22

add s to new cluster, combine its context to new cluster;23

clear inherit regenerate;24

if e is null null then25

is new chain = cluster trace new chain all(ret state, e);26

93

4.7 Framework of Reduced-Space LR(1) Parser Generation

From the available literature it seems that all the existing LR(1) algorithms that compress the

parsing table (and thus can be called reduced-space LR(1) algorithms) can be divided into three

categories:

1) Combining. For this category, the algorithm combines new generated states with old ones

when appropriate. The key is the judging criteria of when is “appropriate”.

Examples of this kind of algorithms include the practical general method of Pager and the

partially working MLR/Honalee algorithm of Tribble.

LALR(1) is a widely used algorithm that is considered a good tradeoff between efficiency and

recognition power. It is also widely know that the difference between LALR(1) and LR(1)

is the existence of reduce/reduce conflicts in the LALR(1) parsing machine. A shift/reduce

conflict existing in a LALR(1) parsing machine would also exist in an LR(1) parsing machine.

An LALR(1) parsing machine can be obtained by combining all those LR(1) states with the

same core configurations. But this would “over-compress” the LR(1) parsing machine so

reduce/reduce conflicts would occur as a result. Intuitively to compress the canonical LR(1)

parsing machine, at the same time not to “over-compress” it and introduce reduce/reduce

conflicts is the key to the solution. According to what we know Pager’s practical general

method is the only one that works for this category. Finding a sound criteria with proven

correctness is not easy.

2) Splitting. This kind of algorithm starts from an LR(0) or LALR(1) parsing machine, finds

those states where reduce/reduce conflicts occur, and split relevant states to resolve the con-

flicts.

Examples of this category include the lane-tracing algorithm of Pager and the splitting method

of Spector.

There are a lot of people aware of this idea and many implemented this idea in their parser

generators. The start point of splitting can be from an LR(0) parsing machine or from an

LALR(1) parsing machine. The method to get an LR(0) parsing machine is quite unified,

but there are different approaches to getting an LALR(1) parsing machine. The dragon book

mentions two, one is considered practical and the other of combining LR(1) states with the

same core set of configurations is considered not practical. Pager’s lane-tracing is another

94

way. The concrete way of find states relevant to reduce/reduce conflicts also vary, although

they should more or less be similar to the lane-tracing algorithm. This is the most commonly

thought of and used approach. The difficult part is in splitting and regenerating those states

involved in reduce/reduce conflicts.

3) Partitioning. This category of algorithms uses the approach of divide conquer by partitioning

the original grammar into small parts, find an LR(1) parsing table for each of them, then

combine these small tables together into a large LR(1) parsing table for the original grammar.

An example is the partitioning algorithm of Korenjak. Another example may be the MSTA

parser generator, whose author Vladimir Makarov said: “MSTA does a lot of optimizations.

Even if you use LR(k) algorithm, it finds and uses LALR and regular parts of grammar”.

This method is not as popular as splitting. It is also less intuitive as combining or splitting.

The tough part here is the strategy and heuristic to do the partitioning.

Also it should be pointed out that this algorithm by itself may or may not be reduced-space.

It just provides this strategy of divide and conquor. In the process of finding LR(1) parsing

table for each small part, it can either use the combining/splitting approach, or just use the

original Knuth canonical algorithm.

This framework can be summarized in figure 4.13 below.

For the combining approach, it generally should start with the canonical LR(1) parsing machine,

combining states along the way. For the splitting approach, it generally should start from the LR(0)

parsing machine, then to the LALR(1) parsing machine, and then work on those inadequate states

with reduce/reduce conflicts in the LALR(1) parsing machine. The partitioning approach as dis-

cussed by Korenjak deals with canonical LR(1) parsing machine, but it would be interesting to see

if the reduced-space LR(1) algorithms can be used instead of the canonical LR(1) algorithm.

4.8 Conclusion

In this chapter we showed the details of design and implementation of some LR(1) algorithms.

The Knuth canonical LR(1) algorithm is implemented with optimized algorithms and efficient

data structures. The practical general method is based on this by adding a state-combining step.

95

Figure 4.13: The approaches to LR(1) parsing machine

The unit production elimination algorithm is implemented using the parsing table, instead of on

the parsing machine automata. This is easier to handle.

We extended the unit production elimination algorithm to remove redundant states and obtain a

minimal parsing machine.

Phase 2 of the lane-tracing algorithm was not described with details before. Here we have shown

the full details of two approaches: one based on the practical general method, the other based on a

lane-tracing table.

Finally we summarized approaches to LR(1) parser generation in a framework. Here we have

worked on the combining and splitting approaches, but not the partitioning approach.

96

Chapter 5

Measurements and Evaluations of LR(1)

Parser Generation

5.1 About the Measurement

In this chapter empirical study on performance is discussed. State numbers and conflict numbers

in the parsing machine of a grammar always keep the same. But time and memory usage can

change according to different environment. However, the relative trend of time and memory usage

of different algorithms keeps the same, and allows us to watch the relative performance of different

algorithms.

5.1.1 The Environment and Metrics Collection

The data are collected on a laptop computer with 1.7 GHz Intel Pentium processor and 1 GB

RAM. The laptop runs Fedora core 4.0. The version of Bison [3] is 2.3. For all the measurements,

time is in sec (second), and memory is in MB (megabyte).

The execution time is measured by the “time” command line utility. Since the execution time

varies a little bit each time, we did ten meansurements on each execution and took the average of

the values.

The memory usage is read from Fedora Core system monitor. To obtain a stable value, a “scanf”

function call is used at the end of the C program, so the program hangs there until the user presses

97

a key. When the program hangs, the memory usage reading is stable in the system monitor. There

is no variation in the reading, therefore there is no need to average multiple readings. Note that

theoretically this way we are reading the memory usage at the end of program execution, but not

the peak memory usage. But at least visually from the system monitor, the memory usage value

increases monotonously. Therefore we just take this final memory usage as the peak memory usage.

5.1.2 The Algorithms

The following algorithms are measured in this study. We have included the acronyms for them.

These acronyms are used in later discussion.

There are four LR(1) algorithms, of these the latter three are reduced-space:

Knuth LR(1): Knuth canonical LR(1) algorithm.

PGM LR(1): LR(1) algorithm based on the practical general method.

LT LR(1) w/ PGM: LR(1) algorithm based on lane-tracing, use PGM in phase 2.

LT LR(1) w/ LTT: LR(1) algorithm based on lane-tracing, use lane-tracing table in phase 2.

These are followed by two LALR(1) algorithms:

LT LALR(1): LALR(1) algorithm based on lane-tracing phase 1.

Bison LALR(1): LALR(1) algorithm implemented in Bison.

Then a LR(0) algorithm:

LR0: The traditional LR(0) algorithm.

There are also two algorithms used to optimize LR(1) parsing machine:

UPE: The unit production elimination algorithm.

UPE Ext: The extension algorithm to the unit production elimination algorithm.

98

5.1.3 The Grammars

17 simple grammars were used to test the correctness of Hyacc. These grammars are shown in

Appendix B. The grammars of 13 real programming languages were used to check the performance

of Hyacc. These real language grammars were obtained from [13] with minor modifications to fit

in Yacc grammar input format. Table 5.1 shows the grammar statistics of these 30 grammars.

Grammar statistics
Grammar Terminal # Non-Terminal # Rule #
G1 3 3 5
G2 3 7 10
G3 3 7 10
G4 4 3 5
G5 5 3 6
G6 5 4 8
G7 10 8 16
G8 4 6 10
G9 5 3 6
G10 4 4 7
G11 3 5 6
G12 8 10 17
G13 2 5 7
G14 13 10 18
G15 14 15 24
G16 21 19 36
G17 7 10 19
Ada 94 239 459
Algol 60 55 77 169
C 82 64 212
Cobol 184 181 401
C++ 5.0 101 186 665
Delphi 95 169 358
Ftp 52 16 74
Grail 42 32 74
Java 1.1 96 97 266
Matlab 44 35 93
Pascal 65 135 257
Turbo Pascal 71 99 222
Yacc 25 58 103

Table 5.1: Number of terminals, non-terminals and rules in the grammars

99

5.2 LR(1), LALR(1) and LR(0) Algorithms

The four LR(1) algorithms here include the Knuth canonical LR(1) algorithm, the PGM algo-

rithm and the two lane-tracing algorithms based on PGM and LTT, all implemented in Hyacc. The

two LALR(1) algorithms here include the one in Bison and the one in Hyacc (based on lane-tracing

phase 1). The LR(0) algorithm is the common one described by textbooks and implemented in

Hyacc.

5.2.1 Parsing Table Size Comparison

A comparison of parsing table sizes of the 30 grammars is shown in Table 5.2. Figure 5.1

contains the 13 real language grammars only, and is the graphic version that better visualizes the

comparison.

Observations:

1) The size of Knuth canonical LR(1) parsing machine is much bigger than the rest.

2) For the three reduced-space LR(1) algorithms, the generated parsing machines are only slightly

bigger than LALR(1) parsing machines. LT LR(1) w/ PGM always produces the smallest

parsing machine. For parsing machines generated by LT LR(1) w/ LTT and PGM LR(1),

sometimes the former is bigger, sometimes the latter is bigger.

3) For Bison, its state number is always one more than Hyacc. This is because Bison adds a

“$end” symbol to the end of the goal production, so it always has one more accept state than

Hyacc LALR(1) parsing machine. Considering this, LT LALR(1) gives the same number of

states as Bison. This validates our implementation.

Summary:

1) For given grammars, reduced-space LR(1) algorithms bring down the parsing machine size

significantly from the Knuth LR(1) parsing machine, and not much bigger than LALR(1)

parsing machine. Actually, if the parsing machine contains no reduce/reduce error (shown in

Table 5.3 on page 104) then the reduced-space LR(1) parsing machine has the same size as

the LALR(1) parsing machine.

100

2) LT LR(1) w/ PGM results in slightly more compact LR(1) parsing machine than PGM LR(1).

This is possibly due to the use of weak compatibility in the PGM algorithm. Use of the strong

compatibility can result in a most compact parsing machine [48]. The strong compatibility

algorithm has not been implemented though, so we cannot compare it at this time.

3) LT LALR(1) works properly.

Hyacc Bison
Grammar Knuth PGM LT LR(1) LT LR(1) LR0 LT LALR(1)

LR(1) LR(1) w/ PGM w/ LTT LALR(1)
G1 8 8 8 8 8 8 9
G2 21 20 20 20 19 19 20
G3 21 20 20 20 19 19 20
G4 16 9 9 9 9 9 10
G5 20 11 11 11 11 11 12
G6 35 14 14 14 14 14 15
G7 18 18 18 18 18 18 19
G8 13 13 13 13 13 13 14
G9 18 10 10 10 10 10 11
G10 17 10 10 10 10 10 11
G11 9 9 9 9 9 9 10
G12 19 19 19 19 19 19 20
G13 13 13 13 13 13 13 14
G14 82 40 40 40 40 40 41
G15 53 53 53 53 53 53 54
G16 130 73 73 73 73 73 74
G17 51 32 32 32 32 32 33
Ada 12786 873 860 860 860 860 861
Algol 60 1538 274 272 294 272 272 273
C 1572 349 349 349 349 349 350
Cobol 2398 657 657 657 657 657 658
C++ 5.0 9785 1404 1261 1496 1256 1256 1257
Delphi 4215 609 609 945 609 609 610
Ftp 210 200 200 200 200 200 201
Grail 719 193 193 193 193 193 194
Java 1.1 2479 439 428 428 428 428 429
Matlab 588 174 174 174 174 174 175
Pascal 2245 418 412 412 412 412 413
Turbo Pascal 1918 394 386 386 386 386 387
Yacc 153 128 128 128 128 128 129

Table 5.2: Parsing table size comparison

101

Figure 5.1: Parsing Table Size Comparison

102

5.2.2 Parsing Table Conflict Comparison

A comparison of parsing table conflicts is shown in Table 5.3.

Observations:

1) LT LALR(1) and Bison LALR(1) produce the same number of shift/reduce and reduce/reduce

conflicts for all the grammars (except for Delphi grammar, which may have some problem).

2) LT LR(1) w/ PGM and PGM LR(1) give the same number of conflicts as LALR(1) (except for

the Delphi grammar). Algol60 and C++ have reduce/reduce conflicts in LR(1) parsing ma-

chine, and therefore are not LR(1) grammars. The other grammars do not have reduce/reduce

conflicts in LALR(1) parsing machine, so no such conflicts in LR(1) parsing machine too. G2

and G3 are LR(1) grammars, and their reduce/reduce conflicts in LALR(1) parsing machine

are resovled in LR(1) parsing machine.

3) LT LR(1) w/ LTT has more reduce/reduce conflicts than the other two reduced-space algo-

rithms. This is because it splits those states with reduce/reduce conflicts and count these

conflicts repeatedly.

Summary:

1) LR(1) algorithms can resolve reduce/reduce conflicts in LALR(1) parsing machine (although

only G2 and G3 are such LR(1) grammars here). The parsing machines of some programming

language grammars (Algol60, C++, Delphi) contain reduce/reduce conflicts that can not be

resolved by LR(1) algorithms, and are not LR(1) grammars.

2) LT LR(1) w/ LTT may have more reduce/reduce conflicts in the generated parsing machine

than the other two reduced-space LR(1) algorithms, due to the fact that it splits relevant states

and count such conflicts repeatedly.

103

Hyacc Bison
Knuth PGM LT LR(1) LT LR(1) LR(0) LT LALR(1)
LR(1) LR(1) w/ PGM w/ LTT LALR(1)

Grammar s/r r/r s/r r/r s/r r/r s/r r/r s/r r/r s/r r/r s/r r/r
G1 0 0 0 0 0 0 0 0 2 0 0 0 0 0
G2 0 0 0 0 0 0 0 0 1 4 0 1 0 1
G3 0 0 0 0 0 0 0 0 1 4 0 1 0 1
G4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G5 0 0 0 0 0 0 0 0 2 0 0 0 0 0
G6 7 0 4 0 4 0 4 0 12 0 4 0 4 0
G7 0 0 0 0 0 0 0 0 8 0 0 0 0 0
G8 0 0 0 0 0 0 0 0 2 0 0 0 0 0
G9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G10 0 0 0 0 0 0 0 0 3 0 0 0 0 0
G11 0 0 0 0 0 0 0 0 0 4 0 0 0 0
G12 0 0 0 0 0 0 0 0 3 27 0 0 0 0
G13 0 0 0 0 0 0 0 0 1 0 0 0 0 0
G14 0 0 0 0 0 0 0 0 5 0 0 0 0 0
G15 0 0 0 0 0 0 0 0 1 0 0 0 0 0
G16 0 0 0 0 0 0 0 0 6 0 0 0 0 0
G17 0 0 0 0 0 0 0 0 4 0 0 0 0 0
Ada 0 0 0 0 0 0 0 0 260 2565 0 0 0 0
Algol 60 0 4 0 1 0 1 0 3 133 336 0 1 0 1
C 2 0 1 0 1 0 1 0 214 0 1 0 1 0
Cobol 6 0 5 0 5 0 5 0 349 1480 5 0 5 0
C++ 5.0 280 31 24 18 24 18 24 250 7140 10812 24 18 24 18
Delphi 316 1191 60 174 58 139 109 578 578 1344 15 121 60 174
Ftp 0 0 0 0 0 0 0 0 6 0 0 0 0 0
Grail 0 0 0 0 0 0 0 0 117 0 0 0 0 0
Java 1.1 2 0 1 0 1 0 1 0 236 582 1 0 1 0
Matlab 25 0 14 0 14 0 14 0 142 45 14 0 14 0
Pascal 0 0 0 0 0 0 0 0 222 264 0 0 0 0
Turbo Pascal 25 0 1 0 1 0 1 0 263 288 1 0 1 0
Yacc 8 0 8 0 8 0 8 0 60 0 8 0 8 0

Table 5.3: Parsing table conflict comparison

104

5.2.3 Running Time Comparison

Table 5.4 shows the time comparison, and Figure 5.2 is the graphic view. The simple grammars

are not included since they run too fast (actually about 0.14 second for all the simple grammars).

Observations:

1) Knuth LR(1) takes the longest time.

2) Reduced-space LR(1) algorithms are faster than Knuth LR(1), and close to Bison LALR(1).

3) For LT LR(1) w/ PGM and LT LR(1) w/ LTT, the latter takes longer time. This is especially

obvious when there is a lot of states to split in the LR(0) parsing machine. The grammars of

Algol60, C++ and Delphi are such examples.

4) LR(0) runs the fastest, as expected.

Summary:

1) Even though more expensive, Knuth LR(1) parser generation is still practical in running time,

since it takes just a few seconds at most for given grammars.

2) Reduced-space LR(1) algorithms are more efficient than Knuth LR(1), and close to Bison

LALR(1), sometimes even faster.

3) LT LR(1) w/ LTT takes more time than LT LR(1) w/ PGM when many states need to be

splitted in the LR(0) parsing machine.

105

Hyacc Bison
Grammar Knuth PGM LT LR(1) LT LR(1) LR(0) LT LALR(1)

LR(1) LR(1) w/ PGM w/ LTT LALR(1)
Ada 1.883 0.406 0.172 0.173 0.136 0.173 0.155
Algol 60 0.606 0.290 0.509 0.531 0.039 0.499 0.174
C 1.047 0.420 0.192 0.192 0.067 0.189 0.225
Cobol 0.234 0.127 0.115 0.113 0.117 0.113 1.690
C++ 5.0 3.529 1.779 1.261 2.045 0.544 1.101 0.705
Delphi 1.141 0.335 0.364 0.945 0.093 0.137 0.638
Ftp 0.016 0.017 0.017 0.017 0.016 0.017 0.268
Grail 0.051 0.024 0.020 0.021 0.017 0.021 0.156
Java 1.1 1.552 1.026 0.350 0.352 0.097 0.350 0.339
Matlab 0.351 0.189 0.117 0.117 0.034 0.116 0.120
Pascal 0.504 0.174 0.066 0.067 0.05 0.066 0.246
Turbo Pascal 0.305 0.098 0.053 0.053 0.042 0.054 0.204
Yacc 0.018 0.026 0.016 0.017 0.015 0.017 0.157

Table 5.4: Time performance comparison (sec)

Figure 5.2: Running Time Comparison

106

5.2.4 Memory Usage Comparison

Table 5.5 shows the memory usage comparison, and Figure 5.3 is the graphic view. The simple

grammars are not included since their memory usage are all very low (below 1 MB).

Observations:

1) Knuth LR(1) always use more or much more memory than the rest.

2) reduced-space LR(1) algorithms use much less memory than Knuth LR(1), and often not

much more than LALR(1). There is no definite order which of the 3 reduced-space LR(1)

algorithms is always smaller though.

3) If only compare LT LR(1) w/ PGM and LT LR(1) w/ LTT, the latter always takes equal or

less memory.

Summary:

1) Knuth LR(1) parser generation requires much more memory than LT LR(1) and PGM LR(1).

However it is still acceptable for today’s personal computers even for grammars as complex

as that of C++ 5.0.

2) Reduced-space LR(1) algorithms use not much more memory than LALR(1).

3) LT LR(1) w/ LTT uses equal or less memory than LT LR(1) w/ PGM.

107

Hyacc Bison
Grammar Knuth PGM LT LR(1) LT LR(1) LR(0) LT LALR(1)

LR(1) LR(1) w/ PGM w/ LTT LALR(1)
Ada 95.1 7.9 7.9 7.9 6.9 7.9 4.0
Algol 60 16.0 4.2 6.4 5.4 3.6 5.1 3.9
C 18.9 6.0 5.2 5.2 4.3 5.2 4.0
Cobol 19.1 6.3 6.5 6.5 6.0 6.5 4.0
C++ 5.0 122.7 23.9 39.1 34.4 12.5 19.9 4.3
Delphi 37.4 6.5 14.5 11.0 5.5 6.4 3.9
Ftp 2.8 2.8 2.8 2.8 2.7 2.8 3.9
Grail 5.3 2.9 2.9 2.9 2.8 3.0 3.8
Java 1.1 35.6 7.8 6.3 6.3 5.0 6.3 3.8
Matlab 7.8 3.9 3.5 3.5 3.0 3.5 3.8
Pascal 18.6 4.9 4.8 4.8 4.4 4.8 3.9
Turbo Pascal 13.8 4.3 4.5 4.5 4.2 4.5 3.9
Yacc 2.6 2.6 2.6 2.6 2.5 2.6 3.9

Table 5.5: Memory performance comparison (MB)

Figure 5.3: Memory Usage Comparison

108

5.3 Extension Algorithm to Unit Production Elimination

5.3.1 Parsing Table Size Comparison

Table 5.6 shows the parsing table size comparison. Figure 5.4 is the graphic view. Figure 5.5

is the graphic view of the comparison of parsing machine size change after applying UPE and UPE

Ext algorithms versus the parsing machine obtained by only using the PGM LR(1) algorithm.

Observations:

1) Unit production elimination may decrease the number of states, but in most cases (12 out of

13) increases it.

2) Using the extension to the unit production elimination algorithm, in 3 out of the 13 real

language grammars the number of states is less than that of Bison. For the other grammars,

although the size of the parsing machine is bigger, it is bigger only by a small margin.

Summary:

1) Unit production elimination may increase the number of states in the LR(1) parsing machine.

2) Extension algorithm to the unit production elimination algorithm decreases the size of the

parsing machine to not much bigger than LALR(1) parsing machine. Therefore it is desirable

to apply the extension algorithm.

109

PGM LR(1) UPE UPE Ext
Grammar State # State # State # Rule #
G1 8 6 6 3
G2 20 11 11 5
G3 20 11 11 5
G4 9 7 7 3
G5 11 9 9 4
G6 14 11 11 5
G7 18 13 6 4
G8 13 11 9 6
G9 10 10 7 3
G10 10 7 7 4
G11 9 7 7 4
G12 19 11 11 8
G13 13 12 12 6
G14 40 48 31 9
G15 53 57 45 16
G16 73 93 65 26
G17 32 26 26 13
Ada 873 1074 805 262
Algol 60 274 498 412 92
C 349 786 380 116
Cobol 657 646 528 268
C++ 5.0 1404 3573 2255 443
Delphi 609 1195 669 200
Ftp 200 211 211 71
Grail 193 247 204 54
Java 1.1 439 1174 673 142
Matlab 174 374 178 53
Pascal 418 844 427 119
Turbo Pascal 394 649 353 116
Yacc 128 134 134 87

Table 5.6: Parsing table size comparison

110

Figure 5.4: Parsing Table Size Comparison

Figure 5.5: Parsing Table Size Change Percentage

111

5.3.2 Parsing Table Conflict Comparison

Table 5.7 shows the parsing table conflict comparison.

Observations:

1) There may be more shift/reduce and reduce/reduce conflicts when UPE and UPE Ext are used

for real language grammars, which in general are not LALR(1) or even LR(1) grammars. But

for the 17 simple grammars which are LALR(1) (except for G6), there is not increase in

number of conflicts.

2) Shift/shift conflicts happen abundantly to some complex grammars when UPE (and so UPE

Ext as well) is used. This is because such grammars are ambiguous and thus not LR(1), so

that UPE cannot be used for such grammars. Users should try their grammars on UPE. It is

fine only when no shift/shift conflict occurs.

3) Note that some grammars (Ada, Matlab) do not have conflicts when use Knuth LR(1) or PGM

LR(1), but do have shift/shift conflicts when use UPE or UPE Ext. No conflicts when using

Knuth LR(1) or PGM LR(1) does not mean it has no conflicts, just that those conflicts may

have been solved using precedence and associativity rules. The grammar still can be non-

LR(1). So when using UPE or UPE Ext, it would cause shift/shift conflicts even though there

is no conflict when using Knuth LR(1) and PGM LR(1).

Summary:

1) UPE and its extension may lead to more shift/reduce and reduce/reduce conflicts for gram-

mars that are not LALR(1) and not LR(1).

2) UPE and its extension sometimes would lead to shift/shift conflicts. This is an error and in

such situation these two optimizations should not be used.

112

PGM LR(1) UPE UPE Ext
Grammar s/r r/r s/r r/r s/s s/r r/r s/s
G1 0 0 0 0 0 0 0 0
G2 0 0 0 0 0 0 0 0
G3 0 0 0 0 0 0 0 0
G4 0 0 0 0 0 0 0 0
G5 0 0 0 0 0 0 0 0
G6 7 0 4 0 4 0 4 0
G7 0 0 0 0 0 0 0 0
G8 0 0 0 0 0 0 0 0
G9 0 0 0 0 0 0 0 0
G10 0 0 0 0 0 0 0 0
G11 0 0 0 0 0 0 0 0
G12 0 0 0 0 0 0 0 0
G13 0 0 0 0 0 0 0 0
G14 0 0 0 0 0 0 0 0
G15 0 0 0 0 0 0 0 0
G16 0 0 0 0 0 0 0 0
G17 0 0 0 0 0 0 0 0
Ada 0 0 57 146 4 57 146 4
Algol 60 0 1 5 1 1 5 1 1
C 1 0 1 0 959 1 0 959
Cobol 5 0 10 0 0 10 0 0
C++ 5.0 24 18 42 43 500 42 43 500
Delphi 60 174 81 186 336 81 186 336
Ftp 0 0 0 0 0 0 0 0
Grail 0 0 0 0 0 0 0 0
Java 1.1 1 0 1 0 144 1 0 144
Matlab 14 0 162 232 68 162 232 68
Pascal 0 0 0 0 70 0 0 70
Turbo Pascal 1 0 1 0 32 1 0 32
Yacc 8 0 8 0 0 8 0 0

Table 5.7: Parsing table conflict comparison

113

5.3.3 Running Time Comparison

Table 5.8 shows the running time comparison, and Figure 5.6 is the graphic view.

Observations and summary: Compared to PGM LR(1), UPE and UPE Ext use longer running

time, sometimes significantly longer. such as for the C++ grammar.

5.3.4 Memory Usage Comparison

Table 5.9 shows the running time comparison, and Figure 5.7 is the graphic view.

Observations:

1) For memory usage, Bison does not change much for different grammars. For Hyacc, the

difference for different grammars can be big.

2) For Hyacc, using PGM LR(1) leads to a bigger reduction in memory than using Knuth LR(1).

When using UPE and UPE Ext, there is a slight increase in memory.

Summary:

1) Compared to PGM LR(1), UPE and UPE Ext require slight increase in memory.

2) UPE and UPE Ext use the same amount of memory, the same as shown by theoretical analysis.

Table 5.10 shows the memory increase percentage after using the UPE algorithm compared to

only using the PGM LR(1) algorithm. UPE Ext uses the same amount of memory as UPE. It shows

that for complex grammars such as Ada, C++, Delphi and Pascal, the increase in memory usage can

be big.

Table 5.11 shows the state number change percentage of using UPE and UPE Ext versus only

using the PGM LR(1) algorithm. It shows that the UPE algorithm often increases the size of the

parsing machine significantly, but the use of UPE Ext algorithm can bring this back down.

114

Grammar PGM LR(1) UPE UPE Ext
Ada 0.406 1.342 3.452
Algol 60 0.290 0.566 0.931
C 0.420 1.142 1.418
Cobol 0.127 1.205 1.206
C++ 5.0 1.779 5.680 33.986
Delphi 0.335 1.347 4.371
Ftp 0.017 0.035 0.035
Grail 0.024 0.066 0.119
Java 1.1 1.026 1.563 3.328
Matlab 0.189 0.307 0.637
Pascal 0.174 1.061 1.787
Turbo Pascal 0.098 0.587 1.159
Yacc 0.026 0.043 0.043

Table 5.8: Time performance comparison (sec)

Figure 5.6: Running Time Comparison

115

Grammar PGM LR(1) UPE UPE Ext
Ada 7.9 9.4 9.3
Algol 60 4.2 4.2 4.2
C 6.0 6.0 6.0
Cobol 6.2 6.4 6.4
C++ 5.0 23.9 30.9 30.9
Delphi 6.5 7.5 7.5
Ftp 2.8 2.9 2.9
Grail 2.9 2.9 2.9
Java 1.1 7.8 8.6 8.6
Matlab 3.9 3.9 3.9
Pascal 4.9 5.7 5.7
Turbo Pascal 4.3 4.3 4.3
Yacc 2.6 2.7 2.7

Table 5.9: Memory usage comparison (MB)

Figure 5.7: Memory Usage Comparison

116

Grammar UPE (and UPE Ext)
Ada 18.99%
Algol 60 0.00%
C 0.00%
Cobol 1.59%
C++ 5.0 29.29%
Delphi 15.38%
Ftp 3.57%
Grail 0.00%
Java 1.1 10.26%
Matlab 0.00%
Pascal 16.33%
Turbo Pascal 0.00%
Yacc 3.85%

Table 5.10: Memory increase percentage of UPE (and UPE Ext) v.s. PGM LR(1)

Grammar UPE UPE Ext
Ada 23.02% -7.79%
Algol 60 81.75% 50.36%
C 125.21% 8.88%
Cobol -1.67% -19.63%
C++ 5.0 154.49% 60.61%
Delphi 96.22% 9.85%
Ftp 5.50% 5.50%
Grail 27.98% 5.70%
Java 1.1 167.43% 53.30%
Matlab 114.94% 2.30%
Pascal 101.91% 2.15%
Turbo Pascal 64.72% -10.41%
Yacc 4.69% 4.69%

Table 5.11: Percentage of state number change compared to PGM LR(1)

117

5.4 Comparison with Other Parser Generators

5.4.1 Comparison to Dragon and Parsing

Three LR(1) parser generators: Dragon [9], Parsing [10] and Hyacc are compared using gram-

mars of similar complexity. See Table 5.12. The performance data of Dragon and Parsing are from

communications with the authors.

It is obvious that Hyacc has a significant advantage in time and memory performance over the

other two, especially in running time. Using the Knuth LR(1) canonical algorithm, Dragon takes

20 minutes 30 seconds, but Hyacc uses only 3.529 seconds. The ratio is about 500:1. Use the PGM

algorithm, Parsing takes 5 minutes 17 seconds, but Hyacc only uses 1.779 seconds. The ratio is

about 180:1.

Memory wise, the difference is not so big. For the Knuth LR(1) algorithm, Hyacc uses 4-times

more memory than Dragon. For PGM LR(1), Hyacc uses one tenth the memory of Parsing. For the

latter, it is quite advantageous.

Parser Imple- Environment Testing Algorithm Time Memory
Generator mented in grammar (sec) (MB)
Dragon C++ iMac Dual Core Cego: Knuth LR(1) 20m30s 30
(2007) 2GHz 120 Terminals

1GB RAM 350 productions
Parsing Python Opteron Lyken: PGM LR(1) 5m17s 220
module 2.2GHz 104 Terminals
(2007) 117 N.T.

525 productions
Hyacc C Intel Pentium C++ 5.0: Knuth LR(1) 3.529 122.7
(2008) 1.7GHz 101 Terminals PGM LR(1) 1.779 23.9

1GB RAM 164 N.T. LT LR(1) w/ PGM 1.261 39.1
Fedora Core 4.0 643 productions LT LR(1) w/ LTT 2.045 34.4

Table 5.12: Comparison with other parser generators

118

5.4.2 Comparison to Menhir and MSTA

Menhir and MSTA are also efficiently implemented and run in speeds comparable to Hyacc.

Table 5.13 shows a comparison of the generated parsing table. MSTA and Hyacc generate the

same number of states in canonical LR(1) parsing machine. However, the corresponding canon-

ical LR(1) parsing machine generated by Menhir can be significantly smaller. Obviously Menhir

used some other optimizations, such that its “canonical LR(1) parsing machine” is not the actual

“canonical LR(1) parsing machine”, but compressed. MSTA also compresses its generated parsing

machine, but not as much as Menhir.

Table 5.14 shows the comparison of conflicts. MSTA and Hyacc always generate the same num-

ber of shift/reduce and reduce/reduce conflicts for the same algorithms. But Menhir uses different

notations, and has smaller values.

Table 5.15 shows the running time comparison. It is similar for all the three parser generators.

There is no significant difference in the measured values.

119

C++ C
Knuth LR(1) PGM LR(1) LALR(1) Knuth LR(1) PGM LR(1) LALR(1)

Menhir 4325 1238 - 1172 351 -
MSTA 9724/8413 1 - 1237/1196 2 1575/1572 - 352/338
Hyacc 9723 1384 1236 1574 351 351

Table 5.13: Parsing table size comparison

C++ C
Knuth LR(1) PGM LR(1) LALR(1) Knuth LR(1) PGM LR(1) LALR(1)

Menhir 15/4/15/12 3 8/2/8/6 - 1/0/1/0 1/0/1/0 -
MSTA 280 s/r, 31 r/r - 24 s/r, 18 r/r 2 s/r - 1 s/r
Hyacc 280 s/r, 31 r/r 24 s/r, 18 r/r 24 s/r, 18 r/r 2 s/r 1 s/r 1 s/r

Table 5.14: Conflict comparison

C++ C
Knuth LR(1) PGM LR(1) LALR(1) Knuth LR(1) PGM LR(1) LALR(1)

Menhir 1.971s 1.484s - 1.640s 0.557s -
MSTA 5.319s - 1.175s 0.918s - 0.130s
Hyacc 3.529s 1.779s 1.101s 1.047s 0.420s 0.189s

Table 5.15: Running time comparison

1For MSTA, a/b means this in output: a canonical LR-sets, b final states
2For MSTA, a/b means this in output: a LALR-sets, b final states
3For Menhir, a/b/c/d means this in the output: a states have shift/reduce conflicts, b states have reduce/reduce conflicts,

c shift/reduce conflicts were arbitrarily resolved, d reduce/reduce conflicts were arbitrarily resolved.

120

5.5 Conclusion

5.5.1 LR(1) and LALR(1) Algorithms

As expected, the Knuth canonical LR(1) algorithm is still quite expensive in both running time

and space. The generated parsing machine is big. That said, for the given 13 programming language

grammars, it is practical on today’s hardware. The most complex grammar of these, the grammar of

C++ 5.0, contains 101 terminals, 186 non-terminals and 665 rules. It costs less than 4 seconds and

about 120 MB memory to generate the parsing machine for the C++ 5.0 grammar. More complex

grammars may contain thousands of rules. But for such grammars, it is still acceptable for the

typical hardware configuration of a personal computer.

That said, considering the theoretical implication and actual performance advantage of reduced-

space LR(1) algorithms, we should always use reduced-space algorithms for faster running speed

and less memory usage, as well as a smaller generated parsing machine.

The practical general method and the lane-tracing algorithm are such reduced-space LR(1) algo-

rithms. For the given programming language grammars, they both generate parsing machines with

size close to those of LALR(1) parsing machines, and time and space requirements not much more

expensive than LALR(1). For LALR(1) grammars, these reduced-space LR(1) algorithms generate

the same parsing tables as those by LALR(1) algorithm. Only for LR(1) grammars it is more ex-

pensive. In this sense, we can adequately replace LALR(1) parser generators with LR(1) ones, with

no worry in modifying existing projects, and less worry for projects to come.

Comparing the three redueced-space LR(1) algorithms (PGM, LT LR(1) w/ PGM and LT LR(1)

w/ LTT), LT LR(1) w/ PGM in general creates a smaller parsing machine than the other two.

Comparing LT LR(1) w/ PGM and LT LR(1) w/ LTT, measurements show that the latter takes

more running time when there are many states to split, but less running space.

The current implemention of practical general method is based on the concept of weak compat-

ibility. The strong compatibility may obtain more compression, but requires more computation and

is harder to implement. It should be satisfying to use weak compatibility. On the other hand, the

practical general method based on weak compatibility is much easier to understand and implement

than the lane-tracing algorithm. From the point of view of a LR(1) parser generator author, there is

no reason to go for lane-tracing instead of the practical general method.

121

However, the advantage of the lane-tracing algorithm is that it is easier to extend to LR(k),

since it only works on those configurations and states relevant to resolve reduce/reduce conflicts.

This is especially true for the LT LR(1) w/ LTT approach. The practical general method, however,

has to handle the entire context tuples for all the configurations and states, and thus becomes more

expensive for increasing k.

5.5.2 The Unit Production Elimination Algorithm and Its Extension Algorithm

The goal of the unit production elimination algorithm is to remove those intermediate states

relevant to unit productions only, obtain a smaller parsing machine, and thus reduce parsing time.

However this goal in some way is weakened by the existence of extra redundant states in the resulted

parsing machine, and the percentage of redundancy can be big. The extension algorithm brings

down the size of the generated parsing machine significantly.

Although the extension algorithm does not require extra space to run other than needed by

the unit production elimination procedure itself, may need much longer running time. This is the

disadvantage. This is evident for those complex grammars in this survey, such as the grammar of

C++ 5.0. However since parser generation is a one-time process, it should be worth such an effort.

Another “problem” with the unit production elimination algorithm is that for non-LR(1) gram-

mars that contains shift/reduce or reduce/reduce conflicts, even though these may be hidden by

using associativity and precedence directives, may cause abundant shift/shift conflicts. Thus this

algorithm should be applied only to pure LR(1)/LALR(1) grammars. In reality, most grammars

are not pure LR(1)/LALR(1). Whether the unit production elimination algorithm and its extension

algorithm can be used for these cases can only be determined by experiment. If shift/shift conflicts

occur then the answer is no, otherwise it is possible to do so.

5.5.3 Hyacc and Other Parser Generators

Hyacc is a highly efficient parser generator. Compared to many not so carefully implemented

LR(1) parser generators, or LR(1) parser generators implemented in less efficient programming

languages, Hyacc has obvious performance advantages. Furthermore, with reduced-space LR(1)

algorithms, which are not usually available in other LR(1) parser generators, Hyacc should be a

quite favorable choice.

122

Menhir and MSTA are both efficient parser generators. The Menhir parser generator also im-

plements the practical general method. It is just in a not so popular programming language Caml,

thus the potential user base is smaller. MSTA, implemented in C++, should be another handy choice

for industry users. However it does not include the reduced-space LR(1) algorithms, thus always

comes out with larger parsing machines. Thus Hyacc has advantages compared to both Menhir and

MSTA.

MSTA also implements LR(k). It is the only parser generator that declares full LR(k) func-

tionality in the industry setting. Current casual testing did not shown any problem with its LR(k)

functionality. But without any careful study and analysis on its LR(k) algorithm (which is not

available to our literature review), it is not known whether its generated output is always correct.

Hyacc takes its LR(k) approach based on lane-tracing. So far it works well for some frequently

used LR(k) grammar examples. It still can not handle situations where lane-tracing upon increasing

k contains cycle, we will work on this later.

In addition to LR(1) and LR(k), Hyacc also implements LALR(1) based on lane-tracing phase 1.

The comparison study shows it generates the same parsing machines as generated by LALR(1) al-

gorithm in Bison. This validates our approach, and provides an implementation to another LALR(1)

approach unaware of by the general public.

Hyacc also implements the LR(0) algorithm. Although not very useful for real world situations,

it nevertheless has education value for academic users.

Besides the algorithms used, Hyacc has an advantage over many other parser generators in that

it uses a command line interface very similar to Yacc and Bison. Many parser generators choose

to invent new interface features and new grammar input formats, and for new users there is a steep

learning curve barrier. With a user interface familiar to a large existing user base, Hyacc should be

easier to use and gain a wider user acceptance.

Finally, Hyacc is written in ANSI C, so can be easily ported to most platforms. It has been

released to the open source community so is easy to obtain.

In conclusion, Hyacc is unique in its wide span of algorithm coverage, efficiency, portability,

usability and availability. In the parser generator community there have been abundant LALR(1)

and LL(k) implementations, Hyacc aims at becoming a practical tool to the community from the

LR(1)/LR(k) side.

123

Chapter 6

LR(k) Parser Generation

This chapter discusses LR(k) parser generation based on lane-tracing.

The exponential behavior of LR(k) parser generation comes from two sources: 1) the number

of states in the parsing machine, and 2) the number of context tuples of the configurations. The

reduced-space LR(1) algorithms we have discussed can solve the first problem. The second problem

can be solved following the way of Terence Parr [52], or as in the edge-pushing algorithm discussed

here by only working on those configurations that actually lead to reduce/reduce conflicts and ignore

the rest.

These problems should be solved when extending lane-tracing to LR(k).

1) Algorithm for LR(k) extension. This part should extend the lane-tracing LR(1) parser gener-

ation algorithm, such that it can be recursively applied where reduce/reduce conflicts cannot

be resolved by available lookaheads.

2) Storage of LR(k) parsing table. This part should efficiently represent the LR(k) lookaheads

in LR(k) parsing table and work well together with the LR(k) algorithm.

3) Parse engine change. After the LR(k) parsing table is generated, the LR(1) parse engine

should be modified so it can make use of the LR(k) parsing table for parsing LR(k) grammars.

124

6.1 LR(k) Algorithm

For the ease of discussion, we define the terms and functions below.

By head configuration we mean those configurations at the start of a lane where we stop in

lane-tracing. On the contrary, by tail configuration we mean those configurations at the end of a

lane from which we start the lane-tracing.

Define the function theads(α, k) to return a set of terminal strings obtained from α. The length

of these strings is k. This function is potentially exponential on k. theads(α, k) is the same as

FIRSTk(α) defined in many other literature.

6.1.1 LR(k) Parser Generation Based on Recursive Lane-tracing

Each time after LR(k) lane-tracing for a fixed k, we need to check if conflicts are resolved, and

further trace LR(k+1) only for states with unresolved reduce/reduce conflicts.

It is possible to do LR(k) lane-tracing on a specific k for each inadequate state, then increase k

and do this again on all unresolved states. This is as shown in Algorithm 6.1.

Algorithm 6.1: LRk v1()

k← 1;1

while the inadequate states list is not empty do2

k← k + 1;3

foreach inadequate state S do4

do LRk lane tracing(S, k);5

if the inadequacy of state S is resolved OR lane tracing ends at state 0 then6

remove S from inadequate states list;7

It is also possible to do LR(k) lane-tracing recursively on one inadequate state until its inade-

quacy is resolved or found not resolvable, then start on another inadequate state. This is as shown

in Algorithm 6.2. The only complication is on states involved in a cycle.

125

Algorithm 6.2: LRk v2()

foreach inadequate state S do1

k← 1;2

while inadequacy of S is not resolved AND lane tracing does not end at state 03

do

k← k + 1;4

do LRk lane tracing(S, k);5

For both algorithms above, the complications occur when states are involved in a cycle and

states shared by lane-tracing originated from different inadequate states. The second may be easier

since if we want to take advantage of the result of LR(k) for LR(k+1), the second algorithm allows

us to remember less intermediate information.

Note that checking LR(k) conflict resolution can be done when inserting the LR(k) entry into

the extended LR(k) parsing table: when inserting a entry, if a different reduction action already

exists in the same location, we know a reduce/reduce conflict occurs. This is the same as for LR(1)

in Hyacc, in which conflicts are detected when inserting into the parsing table. There we may have

shift, reduce, accept actions, but here we only have reduce actions, so it is easier to handle here.

The purpose here is to trace back all the way until we find relevant contexts of length k that

solve the reduce/reduce conflicts of inadequate states. The word “relevant” here means we only get

contexts that are useful to resolving conflict: only for those contexts that cause conflicts, we trace

further. This is needed because the number of LR(k) contexts can increase exponentially with k.

We also should better cache the computation of LR(k) theads, so computation of LR(k+1) theads

can start from those relevant edges.

In order to get enough contexts to resolve conflicts, we may need to go back several levels of

states. Two essential procedures are: 1) lane-tracing, 2) calculation of theads on the string following

the scanned symbol of the relevant configurations.

Here are three possible solutions for LR(k) lane-tracing:

1) Fixed k.

This is shown in Algorithm 6.3.

126

Algorithm 6.3: FixedK(S, k)
Input: state S; number k as in LR(k)

Output: true - conflict resolved, false - failed to resolve conflict

foreach final config Cf of state S do1

Cs← head configuration of Cf ;2

get LRk context(Cs, k);3

if all reduce/reduce conflicts are resolved then4

add context obtained to LR(k) parsing table;5

return true;6

else7

return false;8

Algorithm 6.4: get LRk context(C, k)
Input: Start configuration C; integer k: length of context to get

Output: an array of context strings

result← {};1

c traced← false;2

let C be: A→ α • B β;3

ctxt← theads(β, k);4

foreach string x in ctxt do5

if x.length == k then6

add x to the result array;7

else8

if c traced == false then9

do lane-tracing on C to obtain a set ψ of head configurations of C;10

c traced← true;11

foreach configuration D in ψ do12

array Y = get LRk context(D, k - x.length);13

concatenate x to each string in Y and add to the result array;14

return result;15

127

The need to increase k naturally leads to the next algorithm.

2) Auto-inc k based on Fixed k.

This is dependent on algorithm FixedK(S, k).

Algorithm 6.5: AutoIncK(S)
Input: State S

resolved← false;1

k← 2;2

repeat3

resolved← FixedK(S, k);4

k← k + 1;5

until resolved == true ;6

The problem with this algorithm is that it always repeats the computation for each LR(k) context,

even for those that do not have a conflict associated. E.g., suppose two reductions r1 and r2 both

have conflicted LR(1) context {‘a’}. Then for the LR(2) context, r1 has context set {‘ab’, ‘ac’}, r2

has context set {‘ab’, ‘ad’}. Then we only need to continue with LR(3) on the configurations that

generate conflict ‘ab’. But the current algorithm also computes the configurations that generate ‘ac’

and ‘ad’.

To avoid this problem, we can improve by only computing the configurations that generate ‘ab’.

We call such a method “edge-pushing” and show it below.

3) Auto-inc k based on edge-pushing.

See the next section for this algorithm.

6.1.2 Edge-pushing Algorithm: A Conceptual Example

Below we will show a conceptual description of LR(k) lane-tracing with edge-pushing. Real

examples will be shown in section 6.6 (on page 150).

128

Here the starting state is state 10 with a LR(1) reduce/reduce conflict. Four steps are carried out

from LR(2) to LR(5).

In each graph, the circles with bolded edge are at the cutting edge of lane-tracing. Circle 10

stands for state 10. Circles 3 to 9 actually should mean a head configuration in states 3 to 9, and

here by saying state 3 we actually mean a head configuration in state 3. at the tail of a lane from

which we start the lane-tracing. z is a local variable associated with a head configuration, whose

value is obtained by adding together z and k’ of the tail configuration. k’ is the value used in the

calculation of theads(β, k′) for a configuration A→ α • B β. k’ = k - z, where k is the k in LR(k),

and z is the local z. The graphs below shows an example of the calculation of these values, and how

LR(k) lane-tracing is pushed at the cutting edge.

LR(1) state with reduce/reduce conflict, obtained by LR(1) lane-tracing:

LR(2) states:

Here states 8 and 9 are at the cutting edge of lane-tracing. For state 8, on its right side “r1:

{b, c}” means that ‘b’ and ‘c’ are the context symbols generated by a configuration in state 8 for

reduction r1. Local “z = 0”. It is always 0 for head configurations in LR(1) and LR(2) lane-tracing.

The value of local k’ is obtained by subtracting the local z from the k in LR(k): k’8 = k - z8 = 2 - 0

= 2. The meanings of notations are similar for state 9.

129

LR(3) states:

Here states 5, 6 and 7 are at the cutting edge of LR(3) lane-tracing. The only thing that needs

explanation is the value of z. For state 5, z is obtained by the sum of k’ and z in its tail configuration

in state 8: z5 = k’8 + z8 = 2 + 0 = 2. Similarly z is obtained this way in states 6 and 7.

LR(4) states:

In state 5 we get two consecutive context symbols “dd” by doing theads(β, k′5) calculation

where k’5 = k - z5 = 4 - 2 = 2. In state 7, k’7 = k - z7 = 4 - 2 = 2, theads(β, k′7) returns ‘d’ whose

length is less than 2, so we have to do lane-tracing here to obtain state 4 as shown. In the head

130

configuration in state 4 z4 = k’7 + z7 = 2 + 1 = 3, k’4 = k - z4 = 4 - 3 = 1, and we do theads(β, k′4)

to obtain context ‘d’.

LR(5) states:

Here states 3 and 4 are at the cutting edge of lane-tracing, and we obtain the values of z and k’

for them in the same way as before:

z3 = z5 + k’5 = 2 + 2 = 4, k’3 = k - z3 = 5 - 4 = 1.

z4 = 3 was obtained in the last step, k’4 = k - z4 = 5 - 3 = 2.

Now, we don’t need to add any context to state 10’s final configurations, because the LR(k)

parsing tables (LR(1) parsing table, LR(2) parsing table, ..., LR(5) parsing table) suffice for both

storage of contexts as well as conflict detection. These LR(k) parsing tables are shown in the next

page.

131

These are the corresponding LR(1) to LR(5) parsing tables.
⊗

means a reduce/reduce conflict.

See section 6.3 for the exact notations on storage of LR(k) parsing tables.

LR(1) parsing table:

state/token ... a ...
...
10

⊗
...

LR(2) parsing table:

(state, LR(1) lookahead)/token b c d
(3, a)

⊗
r1 r2

LR(3) parsing table:

(state, LR(2) lookahead)/token d e
(3, b)

⊗
r1

LR(4) parsing table:

(state, LR(3) lookahead)/token d
(3, d)

⊗
LR(5) parsing table:

(state, LR(4) lookahead)/token e f
(3, d) r1 r2

These tables are created when we do the LR(k) lane-tracing. Whenver a conflict is found: e.g.,

when inserting action r2 to a field we find a r2 action already exists in the same cell, then we know

a conflict occurs, and then we pass the two relevant configurations to the next round of lane-tracing.

When parsing an input string, we follow the LR(1), ... LR(k) parsing tables to find a match.

Suppose during a parse we are in state 10, and the next few lookaheads of the input string are

“abddf”. The first lookahead symbol ‘a’ gets us a
⊗

action which denotes a reduce/reduce conflict,

so we take the second symbol ‘b’ and go to the LR(2) parsing table. There we find another
⊗

action

so need to take the third symbol ‘d’ and go to the LR(3) parsing table. This chain of actions stops at

the LR(5) parsing table, where the 5th lookahead ‘f’ denotes an action ‘r2’, which means to reduce

by rule 2.

132

6.1.3 The Edge-pushing Algorithm

Next let us summarize the edge-pushing algorithm below.

Algorithm 6.6: edge pushing(S)
Input: Inadequate state S

Let Set C and Set C2 be � (i.e., empty sets);1

k← 1;2

foreach final configuration T of S do3

T.z← 0;4

Let C be T’s head config, and X be the context generated by C;5

add triplet (C, X, T) to set Set C;6

while Set C 6= � do7

k← k + 1;8

foreach triplet (C: A→ α • B β, X, T) in Set C do9

k’← k - C.z;10

calculate ψ← theads(β, k′);11

foreach context string x in ψ do12

if x.length == k’ then13

insert LRk PT(S, X, last symbol of string x, C, T, Set C2);14

else if x.length == k’ - 1 then15

Σ← lane tracing(C); // Σ is a set of head configurations16

foreach head configuration σ in Σ do17

σ.z← C.z + k’;18

let m be the generated context symbol in σ;19

insert LRk PT(S, X, m, σ, T, Set C2);20

Set C← Set C2;21

Set C2←�;22

Function insert LRk PT() is defined below.

133

Algorithm 6.7: insert LRk PT(s, X, col, γ, config T, Set C2)
Input: State s; token list X; token col; configuration γ; final configuration T; set

Set C2

foreach token x in token list X do1

Let c0 be the LR(k) parsing table entry at [(s, x), col];2

if c0 does not exist then3

add entry (γ, T) to LR(k) parsing table entry [(s, x), col];4

else5

if c0.tail is
⊗

then6

add triplet (γ, col, T) to Set c2;7

else8

add entry (γ, T) to LR(k) parsing table entry [(s, x), col];9

add triplet (γ, col, T) to Set c2;10

add triplet (c0.head, col, c0.tail) to Set c2;11

Note that here each LR(k) parsing table entry is a pair (head, tail). The tail is the configu-

ration where conflict occurs and from which we start lane-tracing. The head is the configuration

where lane-tracing ends. Each element of Set c2 contains the triple (C, X, T), where C is the head

configuration, T is the tail configuration, and X is the context generated by C.

Some discussion of the algorithm follows.

This edge-pushing algorithm uses iteration and avoids recursion. This is achieved with the use

of a queue by putting the configurations to be processed in the next round on the queue. Two

configuration sets are used between iterations, such that during a round of iteration, we draw an

element from the working set, process it and add new derived configurations to the derived set; then

at the end of the iteration, pass the elements of the derived set to the working set and start the next

iteration.

The edge-pushing algorithm eventually stops because when lane-tracing back to state 0, line 16

(see Algorithm 6.6 last page) “Σ← lane tracing(C)” will return an empty set. So eventually Set C2,

and thus Set C, becomes an empty set.

134

At the beginning we initialize the variable z of relevant final configurations to 0, then obtain the

z values for derived configurations recursively.

Each time lane-tracing is done, we only use the LR(1) theads of the new head configurations.

This is easier. In comparison, in algorithm FixedK() when lane-tracing is involved, we may need to

go several rounds of lane-tracing recursively to get all the LR(k) theads, which is much harder.

We don’t need to attach any context to the initial inadequate states’ final configurations, be-

cause here the LR(k) parsing tables can store the LR(k) context symbols as well as detect possible

conflicts.

Here since we only push the cutting edge of lane-tracing, we avoid recalculating those edges

that don’t cause conflict. But due to the exponential nature of theads(α, k), we potentially still may

have an exponential problem.

However, for the entire parsing machine, the number of inadequate states is small. Further,

those configurations that cause conflicts for increasing k may be just a portion of all such initial

configurations, i.e., configurations that we should trace further for LR(k+1) usually are just a small

portion of the configurations that we trace for LR(k). Thus we should expect a below exponential

increase in most cases. This is similar to what is achieved by Terrence’s LL(*) parser generator

ANTLR.

In summary, conceptually this algorithm works well. However there are lots of details other

than what we have discussed, and implementation is not easy. Two major components involved are

lane-tracing and calculation of theads(α, k).

6.1.4 Edge-pushing Algorithm on Cycle Condition

We have described the edge-pushing algorithm on one state. Complication is involved when

lane-tracing of different inadequate states come into the same configurations (e.g. Figure 6.1 (a)

joint), or when cycles are involved in the tracing (e.g. Figure 6.1 (b) cycle).

Using Figure 6.1 (b) as an example, if LR(k) tracing ends at state B and can’t resolve the

reduce/reduce conflict, LR(k+1) tracing ends at state C and can’t resolve the conflict, LR(k+2)

tracing ends at state D and still can’t resolve the conflict, then LR(k+3) tracing will come back to

state B. This forms an infinite cycle: B→ C→ D→ B . . .

135

Figure 6.1: LR(k) lane-tracing: joint and cycle conditions

Then we need to answer two questions: 1) Do we need to cache a previous computation? 2)

what to do with the parameters k’ and z?

For 1), it is obvious that caching a previous computation has advantages. Once we do cache,

then we also don’t need to worry about 2), since we can refer to the cache for contexts generated.

We don’t need to care about k’ and z, since these are used only if we do the computation.

So every time after lane-tracing and we obtain a set of head configurations, we then search in

the cache. If it already exists in the cache, then we get the contexts generated from the cache, and

also the next round of head configurations from the cache.

The problem of cycles can be solved by using a cache as described above. The only unique

problem with cycles is cycle detection: how to avoid tracing down the cycle infinitely.

The cache part so far has only partially been implemented in Hyacc, and will be among the

future work.

136

6.2 Computation of theads(α, k)

6.2.1 The Problem

The algorithm of lane-tracing for LR(k) grammars depends on the calculation of theads(α, k).

Let theads(α, k) be the set of thead (terminal head) symbols of length k for string α. One of

the difficult parts of LR(k) is calculating theads(α, k).

Figure 6.2 shows an example of the need for getting more context for increasing k in LR(k)

lane-tracing.

Figure 6.2: The need of getting more context for increasing k in LR(k) lane-tracing

Assume that for an inadequate state S1, one of its final configurations is C. When we do LR(1)

lane-tracing on configuration C, we end up at configuration D in state S2. Let configuration D be:

X→ a • b c d e, which generates context c, and we stop lane-tracing here with context {“c”}.

If the grammar is LR(2), then we stop lane tracing here with context {“cd”}.

If the grammar is LR(3), then we stop lane tracing here with context {“cde”}.

If the grammar is LR(4), then we cannot stop here, we need to get more lookahead symbols.

From configuration D, we calculate theads(α, 4), where α is “cde”. We get “cde”, whose actual

137

length is 3 and less than 4. So we have to do lane-tracing on D to get more lookahead symbols from

its predecessor configurations. Let’s say the lane-tracing ends at configuration E in state S3: Y→ p

• q r g. So we get the extra lookahead symbol: “r”. Thus for LR(4) grammar, we stop lane tracing

with context set {“cder”}.

If the grammar is LR(5), then we stop lane tracing with context {“cderg”}.

In summary, the non-trivial key component of LR(k) is the algorithm to calculate theads(α, k).

An algorithm to get theads(α, 1) was given as Algorithm 4.6, which first calculates heads(α, 1),

then removes non-terminals from the list to get theads(α, 1). A more efficient way used in Hyacc

was given as Algorithm 4.8.

For theads(α, k), a new algorithm is needed. There is a mechanical way of doing it, but it is

not efficient, and sometimes may not be practical. The mechanical way is based on expanding all

non-terminals to terminals, but this is not always possible.

Example 1. α is “Nbc”, where N → s t. Just plug “st” into “Nbc” so it is “stbc”. Calculation of

theads(α, k) is easy.

theads(α, 1) = {“s”},
theads(α, 2) = {“st”},
theads(α, 3) = {“stb”},
theads(α, 4) = {“stbc”}.

Example 2. α is “Nbc”, where N→ N s | ε, and ε is empty string. Then actually N is s*.

theads(α, 1) = {“s”, “b”},
theads(α, 2) = {“ss”, “sb”, “bc”},
theads(α, 3) = {“sss”, “ssb”, “sbc”},
theads(α, 4) = {“ssss”, “sssb”, “ssbc”}.

Example 3. α is “NMbc”, where N→ N s | ε, M→M t | ε. Then actually N is S*, and M is t*.

theads(α, 1) = {“s”, “t”, “b”},
theads(α, 2) = {“ss”, “st”, “sb”, “tt”, “tb”, “bc”},
theads(α, 3) = {“sss”, “sst”, “ssb”, “stt”, “stb”, “sbc”, “ttt”, “ttb”, “tbc”},
theads(α, 4) = {“ssss”, “ssst”, “sssb”, “sstt”, “sstb”, “ssbc”, “sttt”, “sttb”, “stbc”, “tttt”, “tttb”,

“ttbc”}.

138

It is easy to see the complexity of theads(α, k) increases very fast. Thus if the algorithm of

lane-tracing of LR(k) grammars depends on theads(α, k), its complexity also increases very fast.

Also if the grammar rules for N and M in examples above are not so simple, say if it’s a “for-

mular” element in a grammar for math expressions, or it’s a “sentence” element in a grammar for

the English language, then it may be hard to calculate theads(α, k).

The calculation of theads(α, k + 1) also may not be able to take advantage of the result of

theads(α, k). For example, let A→ c d e, B→ f g. theads(AB, 4) may be able to take advantage

of the result of theads(AB, 3) in that we can store theads(A, 3) = “cde” and get theads(B, 1) =

“f”, then concatenate these two parts to get theads(AB, 4) = “cdef”. However, theads(AB, 3) can

not take any advantage from the result of theads(AB, 2) this way.

In summary, the question is: the algorithm of lane-tracing on LR(k) grammar depends on the

calculation of theads(α, k). But it is not always practical to do, since evaluation of the k-heads of

strings can involve determining sets whose maximum size increases exponentially with increasing

value of k.

On the other hand, we see that in practical real grammars, the set of k-heads may not be imprac-

tically large for any k. In lane-tracing, lanes that lead back to state 0 cannot be traced further, and

no larger context is possible beyond this point.

Also if the evaluation of contexts is carried out at compile time, we can terminate the tracing of

lanes that do not generate the k-head of the remaining input. This is relevant in the discussion of

lane-tracing at compile time in section 6.7.

6.2.2 Literature Review on theads(α, k) Calculation

Our study of the LR(k) algorithm based on lane-tracing shows that the calculation of LR(k)

lookahead is one of the major steps. We proposed the edge-pushing LR(k) algorithm (Algorithm

6.6), which depends on a function theads(α, k) to calculate k-lookahead of a string α. theads(α, k)

is also referred to as FIRSTk(α) in some other literature. A literature survey gave the following

information.

139

The work of DeRemer and Pennello [25] on “Efficient computation of LALR(1) look-ahead

sets” and the work of Kristensen and Madsen [17] on “Methods for computing LALR(k) lookahead”

are for LALR grammars.

The PhD thesis of Terrence [52] proposed a way to compute FIRSTk(α). This seems to be the

only one that we found to work. We believe it works since it is the one used in ANTLR. Basically,

a data structure called GLA (Grammar Lookahead Automata) is used to represent grammars. To

calculate LR(k) lookahead, just do a bounded walk of a GLA, and the lookaheads are stored as a

lookahead DFA (Deterministic Finite Automata). Terrence’s PhD thesis uses one chapter to intro-

duce the GLA grammar representation, and another chapter to explain lookahead computation and

representation. This algorithm needs different fundamental data structures from the current ones of

Hyacc.

Some people at the comp.compiler discussion group pointed out that the lecture notes of Kwang-

Moo Choe [21] includes a method to compute LR(k) lookahead. The algorithm quoted by Choe is

actually given by Aho and Ullman as Algorithm 5.5 in [14].

Eventually a FIRSTk(α) algorithm is given by Pager [49] and used in Hyacc. Details of this

algorithm is given in the next section. Compared to the algorithm of Aho and Ullman, which uses a

bottom-up process, this algorithm takes a top-down approach and is quite different.

140

6.2.3 The theads(α, k) Algorithm Used in Hyacc

We define theads(α, k) to be the set of terminal heads of string α, where the length of each

terminal head string is k.

To ease illustration of the algorithm, let’s define the following functions:

For string α = x1x2...xn, hv(α, k) is a substring of α that consists of the head of α up to the

k-th symbol that does not vanish, or the entire α string if it contains less than k symbols that do not

vanish.

For string α = x1x2...xn, let prod(α, j) be the set of strings obtained by applying all possible

productions to the j-th symbol xj of α.

The theads(α, k) algorithm used in Hyacc is given below [49].

Algorithm 6.8: theads(α, k)
Input: string α: x1x2...xn; integer k: length of theads

Output: the k-head set H of α: {β | β = theads(α, k) }

Let H be the set of k-heads that we want to obtain;1

Let S be the set of heads whose length is less than k;2

Let L be a list of strings;3

Initially, L is empty, add hv(α, k) to L;4

for j = 1 to k do5

foreach string β in L do6

φ = prod(α, j);7

foreach string γ in φ do8

add hv(γ, k) to the end of L if it is not in L yet;9

remove from L all strings whose j-th symbol is a non-terminal;10

remove from L all strings whose k-heads are all terminals, and add these11

k-heads to H;

remove from L all strings of length less than k that consist of terminals only,12

and add these strings to set S if needed;

The following example is from [49].

141

Example. Given grammar G6.1 below, find theads(XY ZU, 2).

X→ Y | x | ε
Y→ Z | y | ε
Z→ X | z | ε
U→ u

First round of operation for j = 1 is:

j i-th string to process string added to L string seq. no.
1 1 XYZU 1

YYZU 2
xYZU 3
YZU 4

2 ZYZU 5
yYZU 6

3
4 ZZU 7

yZU 8
ZU 9

5 zYZU 10
6
7 XZU 11

zZU 12
8
9 XU 13

zU 14
U 15

10
11 xZU 16
12
13 YU 17

xU 18
14
15 u 19
16
17 yU 20
18
19
20

Remove all strings with non-terminals in the j-th (first) position, remove all strings containing

2-heads, and remove all strings of length less than 2 and contains only terminal strings, we have H

= {}, S = {u}.

142

Now we start the next round where j = 2:

j i-th string to process string added to L string seq. no.
2 xYZU 1

yYZU 2
yZU 3
zYZU 4
zZU 5
zU 6
xZU 7
xU 8
yU 9

1 xZZU 10
xy 11

2 yZZU 12
yy 13

3 yXU 14
yz 15

4 zZZU 16
zy 17

5 zXU 18
zz 19

6 zu 20
7 xXU 21

xz 22
8 xu 23
9 yu 24
10 xXZU 25
11
12 yXZU 26
13
14 yYu 27

yx 28
15
16 zXZU 29
17
18 zYU 30

zx 31
19
20
21 xYU 32

xx 33

143

j i-th string to process string added to L string seq. no.
(cont.) 22

23
24
25
26
27
28
29
30
31
32
33

Remove all strings with non-terminals in the j-th (second) position, remove all strings containing

2-heads, and remove all strings of length less than 2 and contains only terminal strings, we have H

= {xy, yy, zy, zz, zu, xu, xz, yz, yx, yu, zx, xx}, S = {u}.

144

6.3 Storage of LR(k) Parsing Table

We keep the current 2-dimensional matrix format of the LR(1) parsing table. For LR(k) exten-

sion, a 2-dimensional matrix is used for each fixed k. For an LR(k) grammar, there is an array of

parsing tables for each of LR(1), LR(2), ..., LR(k). When resolving conflicts, if the LR(i) parsing

table can’t do it, we consult the LR(i+1) parsing table. This repeats until the conflict is resolved.

A special symbol (
⊗

) is used to denote a reduce/reduce conflict in the parsing table.

In the LR(k) parsing table (k ≥ 2), each column represents a lookahead token as in the LR(1)

parsing table. Each row represents a (state, token) pair, where the token is a lookahead token

that causes reduce/reduce conflict in LR(k - 1) parsing table. By doing this we avoid repeating

lookaheads for LR(1), LR(2), ... LR(K - 1) in the LR(k) parsing table, and can save space.

An example of the tentative way of storing the LR(k) parsing table in a file is given below.

Here is the LR(1) Parsing table.

state/token $ a b c d E T
0 s1 g2 g3
1 acc s2
2 r1 s3 s4 r1 g4
3 s2

⊗
r1 r2

4 r2 r2 s4
...

In state 3, a reduce/reduce conflict occurs on token ‘b’ and needs more lookaheads to resolve.

Assume state 3 contains the following reduce/reduce conflict:

...
reduction r1: A→ B • {b, c}
reduction r2: C→ D • {b, d}
...

Now assume the LR(2) lane-tracing results in state 3 as follows:

...
reduction r1: A→ B • {ba, bd, c}
reduction r2: C→ D • {bc, bd, d}
...

145

Then the corresponding LR(2) parsing table is:

(state, token) \ LR(2) token $ a b c d E T
(3, b) r1 r2

⊗
Assume that after LR(3) lane-tracing on ‘bd’ (to do this efficiently, record those new lane head

states/configurations that generate ‘bd’ and start further lane-tracing there), we get this state 3:

...
reduction r1: A→ B • {ba, bda, c}
reduction r2: C→ D • {bc, bdb, d}
...

Then the corresponding LR(3) parsing table is:

(state, token) \ LR(3) token $ a b c d E T
(3, d) r1 r2

Or it is possible that we end LR(3) lane-tracing of state 3 at state 0 and can no longer trace back,

but still cannot resolve the reduce/reduce conflict:

...
reduction r1: A→ B • {ba, bd$, c}
reduction r2: C→ D • {bc, bd$, d}
...

Then the corresponding LR(3) parsing table entry is:

(state, token) \ LR(3) token $ a b c d E T
(3, d)

⊗
Alternatively we can also specify a default reduction for this unresolved conflict.

In an LR(k) parsing table, we can also keep only those columns that are involved in reduce/reduce

conflicts, and omit the rest to save space.

146

Actual LR(k) Parsing Table Storage in Hyacc

In section 3.3.2 we discussed the actual storage of LR(1) parsing table in the hyaccpar file of

Hyacc.

For the LR(k) extension, Hyacc uses another parse engine file hyaccpark, which contains data

structures and algorithms for manipulating LR(k) parsing tables.

These variables and arrays are actually used to represent the LR(k) parsing tables in addition to

those for LR(1).

Variable/Array Name Explanation
yy lrk k The maximum value of k for this LR(k) grammar.
yy lrk rows[] The number of rows in each LR(k) parsing table.

Note that each row is for a (state, token) pair.
For each parsing table, there may be multiple states,
and each state may have multiple tokens.

yy lrk cols The value is yyPTC.length + 2.
Each row starts with two fields for each (state, token) pair,
followed by one entry for each token.
This is where yyPTC.length + 2 comes from.

yy lrk r[] The actual values in each LR(k) parsing table.
The first two entries are for the (state, token) pair.
This is followed by (index, value) pairs, where
index is the index of a token in the yyPTC[] array,
and value is the action for this token:

-2 means reduce/reduce conflict,
a positive number means no conflict and is

the corresponding production’s ruleID.
Finally, -1 labels the end of each row.

yyPTC[] The values of parsing table column tokens.

Note that the LR(1) parsing table should have this change: where a reduce/reduce conflict oc-

curs, the previous default reduction number should be replaced by a special value labeling the oc-

currence of a reduce/reduce conflict. This value is set to -10000010 in Hyacc. In the parse engine’s

arrays, this would mean the change of corresponding values in arrays yyfs[] and yytblact[].

147

6.4 LR(k) Parse Engine

The LR(k) parse engine is an extension to LR(1) parse engine, which was shown in section 3.3

on page 24.

In the LR(1) parse engine, the action depends on the value at parsing table entry (S, L) in the

LR(1) parsing table, where S is a state and L is a lookahead symbol. For LR(k) the only change to

the LR(1) parsing table is the addition of the
⊗

symbol, which leads to the following extension,

based on the LR(k) parsing table data structure in the last section. The LR(k) parser engine extension

is shown in Algorithm 6.9 below.

Algorithm 6.9: LR(k) parse engine extension
Input: Current state S; LR(1) lookahead L; action A: action(S, L)

if A ==
⊗

then1

k = 2;2

while true do3

Lnext← next lookahead;4

if Lnext == EOF then5

Report error and exit; // premature end of input stream.6

else7

In LR(k) parsing table, find entry Anext← ((S, L), Lnext);8

if Anext ==
⊗

then9

L← Lnext;10

k← k + 1;11

else12

// A next is reduction, or � plus default reduction;13

do reduce (the same as in LR(1));14

break out of while loop;15

The repeat loop eventually will end when a reduction is found, either the reduction resolves

the reduce/reduce conflict, or the reduction is the end of LR(k) lane-tracing in state 0 and a default

reduction is used.

148

6.5 Performance

LR(1) parser generation was believed to be expensive in time and space. We have shown that

practically this is not an issue now. LR(k) parser generation is more expensive than LR(1).

Here we approach LR(k) using the edge-pushing algorithm, which recursively calls the lane-

tracing LR(1) algorithm on states with reduce/reduce conflicts. The performance bottleneck comes

from two aspects: 1) lane-tracing, 2) calculation of theads(α, k).

The performance of LR(k) is not measured here since we only tested the edge-pushing algorithm

on simple grammars. However, since after LR(1) there are usually not many states that contain

reduce/reduce conflicts, we apply further lane-tracing only on a small portion of all the states. Also

each time after increasing k, the states involved in LR(k+1) lane-tracing is only a portion of those

involved in LR(k). With the use of a cache, each state should be traced no more than once. This

analysis shows that lane-tracing should not cause much problem for the performance.

Besides lane-tracing, the process of finding theads(α, k) is another critical step. Potentially

this is still exponential in k. But practically, most LR(k) grammars should end lane-tracing fast, or

in the worst case end up at state 0 after some rounds. Unless k is really large and the string α is

really long, theads(α, k) should not cost too much time or space.

In summary, in most cases the performance of LR(k) parser generation should be acceptable.

149

6.6 Examples

Example. Given LR(5) Grammar 6.2 [49]:

sentence→ male the male subject is male a male adjective male object |
female the female subject is female a female adjective female object

male the→ the

female the→ the

male subject→ student | friend

female subject→ student | friend

male a→ a

female a→ a

male adjective→ tall | short

female adjective→ tall | short

male object→ boy | man

female object→ girl | woman

The LR(1) parsing state machine is shown in Figure 6.3. The state that contains a reduce/reduce

conflict is state 4. The default reduction to solve the conflict is reduction 3 when the next token is

“friend” or “student”. The only two states involved in lane-tracing are state 4 and state 0, as shown

in Figure 6.4.

In summary, input to this grammar is: “the student/friend is a tall/short boy/man/girl/woman”.

at state 0, the parse can go either on the right path for male, or on the left path for female.

It is obvious that “male the” and “female the”, “male subject” and “female the”, “is”, “male a”

and “female a”, “male adjective” and “female adjective” are all identical. The only way to disam-

biguate the parse is the last item: “male object” for “boy” or “man”, or “female object” for “girl”

or “woman”.

Therefore in order to solve the reduce/reduce conflict at state 4, one needs to look 5 tokens ahead

after the current token “the” to determine whether to use reduction 3 or 4. If the 5th token is “boy”

or “man” then reduce by rule 3 and go to state 2. If the 5th token is “girl” or “woman” then reduce

by rule 4 and go to state 3. This is an LR(5) grammar.

150

Figure 6.3: Parsing machine of grammar G6.2

Figure 6.4: Parsing machine of grammar G6.2 - the part relevant to lane-tracing

151

Now let’s show the steps of applying the edge-pushing algorithm to this example.

We have labeled the configurations as in Figure 6.4.

The following graph shows the configurations involved in LR(1) lane-tracing. Configurations 4

and 5 do not generate any contexts and are shown in dashed line circles. These two configurations

will be ignored in the later graphs. Configurations 2 and 3 are the head configurations that generate

contexts, and configurations 6 and 7 are the corresponding tail configurations where reduce/reduce

conflicts occur.

This is the step for LR(1) when applying edge-pushing:

This is the step for LR(2) when applying edge-pushing:

152

This is the step for LR(3) when applying edge-pushing:

This is the step for LR(4) when applying edge-pushing:

This is the step for LR(5) when applying edge-pushing:

At this time the reduce/reduce conflicts are resolved.

153

The corresponding LR(1) to LR(5) parsing tables are:

LR(1) parsing table:

state/token ... friend student ...
...
4

⊗ ⊗
...

LR(2) parsing table:

(state, LR(1) lookahead)/token is
(4, friend)

⊗
(4, student)

⊗
LR(3) parsing table:

(state, LR(2) lookahead)/token a
(4, is)

⊗
LR(4) parsing table:

(state, LR(3) lookahead)/token tall short
(4, a)

⊗ ⊗
LR(5) parsing table:

(state, LR(4) lookahead)/token man boy woman girl
(4, tall) r1 r1 r2 r2
(4, short) r1 r1 r2 r2

154

In the parse engine, arrays representing the LR(1) parsing table are shown in table 6.1:

static YYCONST yytabelem yyfs[] = {
0, 0, 0, 0, -3, 0, -5, -6, 0, -7,
-8, 0, 0, 0, -9, 0, -10, 0, -11, -12,
0, -13, -14, -1, -15, -16, -2, -17, -18};

static YYCONST yytabelem yyptbltok[] = {
257, -1, -2, -3, 0, 258, 259, -4, 258, 259,
-5, -10000001, 267, -10000001, -10000001, 267, -10000001, -10000001, 260, -6,
260, -7, 261, 262, -8, -10000001, 261, 262, -9, -10000001,
263, 265, -10, -10000001, -10000001, 264, 266, -11, -10000001, -10000001,
-10000001, -10000001, -10000001, -10000001, -10000001, -10000001, -10000000};

static YYCONST yytabelem yyptblact[] = {
4, 1, 2, 3, 0, 6, 7, 5, 9, 10,
8, -3, 11, -5, -6, 12, -7, -8, 14, 13,
16, 15, 18, 19, 17, -9, 21, 22, 20, -10,
24, 25, 23, -11, -12, 27, 28, 26, -13, -14,
-1, -15, -16, -2, -17, -18, -10000000};

static YYCONST yytabelem yyrowoffset[] = {
0, 4, 5, 8, 11, 12, 13, 14, 15, 16, 17, 18,
20, 22, 25, 26, 29, 30, 33, 34, 35, 38,
39, 40, 41, 42, 43, 44, 45, 46};

static YYCONST yytabelem yyr1[] = {
0, -1, -1, -2, -3, -4, -4, -5, -5, -6,
-7, -8, -8, -9, -9, -10, -10, -11, -11};
static YYCONST yytabelem yyr2[] = {
0, 13, 13, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3};

Table 6.1: LR(1) storage tables in y.tab.c for grammar G6.2

The LR(1) parsing machine will always reduce to default production 3 at state 4 and go to the

male branch. An error is reported if the last token is “girl” or “woman”.

In comparison, a LR(5) parsing machine can successfully distinguish these two situations and

reduce to the correct production according to the 5th token.

In the corresponding LR(k) parse engine, the variables and arrays used to represent LR(k) pars-

ing tables are shown in table 6.2 below:

155

static YYCONST yytabelem yyfs[] = {
0, 0, 0, 0, -10000010, 0, -5, -6, 0, -7,
-8, 0, 0, 0, -9, 0, -10, 0, -11, -12,
0, -13, -14, -1, -15, -16, -2, -17, -18};

static YYCONST yytabelem yyptbltok[] = { . . . };

static YYCONST yytabelem yyptblact[] = {
4, 1, 2, 3, 0, 6, 7, 5, 9, 10,
8, -10000010, 11, -5, -6, 12, -7, -8, 14, 13,
16, 15, 18, 19, 17, -9, 21, 22, 20, -10,
24, 25, 23, -11, -12, 27, 28, 26, -13, -14,
-1, -15, -16, -2, -17, -18, -10000000};

static YYCONST yytabelem yyrowoffset[] = { . . . };
static YYCONST yytabelem yyr1[] = { . . . };
static YYCONST yytabelem yyr2[] = { . . . };

static YYCONST yytabelem yy lrk k = 5;
static YYCONST yytabelem yy lrk rows[] = {2, 1, 1, 2};
static YYCONST yytabelem yy lrk cols = 26;
static YYCONST yytabelem yy lrk r[] = {
4, 259, 1, -2, -1,
4, 258, 1, -2, -1,
4, 267, 5, -2, -1,
4, 260, 6, -2, 7, -2, -1,
4, 262, 8, 3, 9, 3, 10, 4, 11, 4, -1,
4, 261, 8, 3, 9, 3, 10, 4, 11, 4, -1
};

static YYCONST yytabelem yyPTC[] = {
0, 267, 257, 258, 259, 260, 261, 262, 263, 265,
264, 266, CONST ACC, -1, -2, -3, -4, -5, -6, -7,
-8, -9, -10, -11
};

Table 6.2: LR(k) storage tables in y.tab.c for grammar G6.2

Note that tables that are the same as those in LR(1) are shown by “. . . ”. The “-10000010” in

bold font in yyfs[] and yyptblact[] arrays labels reduce/reduce conflicts to be solved by consulting

the LR(k) parsing tables. It is the
⊗

symbol we used in the previous sections.

156

Example. LR(k) grammar G6.3. Here k depends on the value of n: k = n + 1. cn is the

concatenation of n letters ‘c’.

S→ a A D a | b A D b | a B D b | b B D a

A→ a

B→ a

D→ cn

Figure 6.5: Parsing machine of grammar G6.3 - the part relevant to lane-tracing

Figure 6.5 shows the LR(1) parsing machine obtained using lane-tracing. States 6 and 18 both

have reduce/reduce conflicts on token ‘c’. With LR(k), the parse engine traces back to states 2 and

3 correspondingly, and get through the tokens in non-terminal D which is the string of n letters ‘c’,

then use the next token ‘a’ or ‘b’ to make the choice of reduction to use. For example, in state 6,

context cnb means reduce with r5: A→ a, context cna means reduce with r6: B→ a.

157

As in the last example, we will show the steps of applying edge-pushing. The following graph

shows the configurations involved in lane-tracing on state 18. Again configurations 12 and 13 do

not generate contexts. Configurations 10 and 11 are head configurations that generate contexts.

Configurations 16 and 17 are corresponding tail configurations that have reduce/reduce conflict.

This is the step for LR(1) when applying edge-pushing:

This is the step for LR(n+1) when applying edge-pushing, which resolves the conflict:

158

Note that state 6 also has a reduce/reduce conflict. We can apply the same procedure above for

configurations 14 and 15 in state 6.

The complete (including both states 6 and state 18) parsing tables are:

LR(1) parsing table:

state/token ... c ...
...
6

⊗
...
18

⊗
...

LR(2) parsing table:

(state, LR(1) lookahead)/token c
(6, c)

⊗
(18, c)

⊗
Then it repeats with LR(3), LR(4), ..., until LR(n+1) parsing table:

(state, LR(n) lookahead)/token a b
(6, c) r1 r2
(18, c) r2 r1

159

Example. LR(3) grammar G6.4:

S→ a A D a | b A D b | a A D b | b C E

A→ a

B→ a

D→ e d

C→ B e

E→ d a

Figure 6.6: Parsing machine of grammar G6.4 - the part relevant to lane-tracing

160

Again we will show the steps of applying edge-pushing. The following graph shows the con-

figurations involved in lane-tracing on state 22. Configurations 12 and 14 do not generate contexts.

Configurations 10 and 13 are head configurations that generate contexts. Configurations 17 and 18

are corresponding tail configurations that have reduce/reduce conflict.

This is the step for LR(1) when applying edge-pushing:

This is the step for LR(2) when applying edge-pushing. Note now configuration 13 can not

generate LR(2) context, so we have to trace back one more round to the next head configuration 11:

161

This is the step for LR(3) when applying edge-pushing:

Now the reduce/reduce conflict is resolved.

State 6 also has a reduce/reduce conflict. Following similar procedure we can obtain contexts to

resolve its conflict. The complete LR(k) parsing tables (for both state 6 and state 22) are:

LR(1) parsing table:

state/token ... e ...
...
6

⊗
...
22

⊗
...

LR(2) parsing table:

(state, LR(1) lookahead)/token d
(6, e)

⊗
(22, e)

⊗
LR(3) parsing table:

(state, LR(2) lookahead)/token a b
(6, d) r1 r2
(22, d) r2 r1

Note the difference of this example is that we have to do one more round of lane-tracing to

resolve the conflicts. The previous two examples only needed one lane-tracing.

162

Example. Other LR(k) grammars that can be solved by Hyacc.

LR(2) grammar G6.5 [4]:

S→ a A a | b A b | a B b | b B a

A→ C a

B→ D a

C→ a

D→ a

LR(3) grammar G6.6 [4]:

S→ a A a a | b A a b | a B a b | b B a a

A→ C a

B→ D a

C→ a

D→ a

163

6.7 Lane-tracing at Compile Time

This section discusses the possibility of doing lane-tracing at compile time [51].

The logic for this is that, since the number of states involving LR(k) computation is small, we

can move lane-tracing to compile time to save the complication of lane-tracing at parser generation

time. The parsing table remains the same as LR(1), except that those entries with reduce/reduce

conflicts are specially labeled. The intensive part of the work is transferred to the parse engine used

at compile time.

Example. Given LR(2) grammar G6.7:

S→ a A D a | b A D b | a B D b | b B D a
A→ a
B→ a
D→ c

The part of the LR(1) parsing machine involving LR(2) is:

Figure 6.7: LR(2) part of the LR(1) parsing machine for grammar G6.7

It is obvious that state 6 has a reduce/reduce conflict. Lane-tracing back to state 2 and state 3

can resolve the conflict. In LR(2) parsing machine, state 6 should be split into two states. But in

LR(1) parsing machine, state 6 is one single state with a reduce/reduce conflict.

164

Now suppose we are at state 2, the lookahead is ‘a’, the action is shift to state 6.

Next we are at state 6, the lookahead is ‘c’, so we need to reduce. But by ‘A→ a’ or ‘B→ a’?

To resolve the conflict we do lane-tracing.

In parser generation time lane-tracing we need to trace back to both states 2 and state 3. But

here since we have state 2 on the state stack, we only need to trace back on state 2. This results in

context {‘ca’} for ‘A→ a’ and {‘cb’} for ‘B→ a’.

So besides the current lookahead ‘c’, we check the next lookahead to make decision on which

reduction to use. If it is ‘a’ then we reduce by ‘A→ a’, otherwise if it is ‘b’ then we reduce by ‘B

→ a’.

The conclusions for compile-time lane-tracing are:

1) We only need to trace back on states that are currently on the state stack, and thus save tracing

time and it is less complicated as well.

2) We need to keep records of all the configurations in the states. We can limit these states to the

ancestor states of the inadequate states, which could be a relatively small portion of all the

states. To be more space-efficient, when recording the configurations in each state, we can

just record the rule number of the configuration (so we’ll search for the rule in the grammar’s

rule list), and also the position of the scanned symbol.

3) We need to reconstruct the involved part of the LR(1) parsing machine for this to work. In

comparison to the current LR(1) parse engine, which only needs to make use of the 2-D

LR(1) parsing table, a lot of extra information will need to be stored and used. LR(1) parsing

is linear in performance to the size of input string. But when compile-time lane-tracing is

added, it becomes uncertain.

Implementation Details

We need:

1) the normal LR(1) parsing table. This is already done.

165

2) Inadequate states and their ancestor states. The question is how to get the ancestor states?

A simple solution needs to modify the current data structure for state, so each state not just

keeps a list of its children, but also a list of its parents. Maybe this can be done in a separate

data structure, so we can construct such a network only when this algorithm is used.

3) In each state we also need to keep a record of the configurations. We can let each configuration

keep a list of its parents, just like in 2). This again can be done is a separate data structure to

avoid extra work when not using this algorithm.

4) Then when doing the compile-time lane-tracing, we need to reconstruct the parsing machine

automata in order to use the existing implementation.

Actually, one design can be like this. Compile time lane-tracing has only a minor difference

from the LR(k) parse engine. In the LR(k) parse engine algorithm (on page 148), on line 8, instead

of looking into the LR(k) parsing table (which does not exist in this case), we trace back on each

head configuration C1, ..., Cn, in the same manner as edge-pushing. Then check the next generated

context symbols (on the edge of tracing) of each front edge, if any two new generated context

symbols are the same, then the reduce/reduce conflict is not resolved, and we need to trace further,

and only on those new hand configurations involved in conflict. Now for the LR(1) parsing table,

those locations where there is a reduce/reduce conflict are labeled by
⊗

. This is all about the

parsing table we need, all the rest rely on the edge-pushing process in the parse engine.

6.8 More Issues

In this chapter we have described our design and implementation of the edge-pushing LR(k)

algorithm by extending LR(1) lane-tracing. Here are some more thoughts and issues.

1) The role of state splitting in LR(k). In the LR(1) lane-tracing algorithm, we does state-

splitting from LALR(1) to LR(1). But from LR(1) to LR(k), there is no more state splitting.

We just recursively trace back the configuration lanes to get more context information to solve

LR(k) reduce/reduce conflicts. This actually is more the statement of a fact than an issue.

2) Avoid infinite cycling upon increasing k. This remains an issue and should be solved with a

cache-like mechanism.

166

3) LR(k) grammars that don’t have reduce/reduce conflicts in the LALR(1) parsing machine.

One problem should be noted that it seems some LR(k) grammars have only shift/reduce

conflicts in their LR(1) parsing machine, and no reduce/reduce conflicts. In such situations the

pre-condition of applying lane-tracing, existence of reduce/reduce conflicts, does not exist.

A guess is that for LR(k) we should apply lane-tracing on states involved in shift/reduce

conflicts in such situations. We know that shift/reduce conflicts existing in the LALR(1)

parsing machine also exist in the LR(1) parsing machine. But for LR(k), this may not hold,

and we need to try to resolve shift/reduce conflicts the same way as we do for reduce/reduce

conflicts. This issue needs further exploration. Some such LR(2) grammars are shown in [2]

by Pete Jinks.

Example. Given the Yacc grammar G6.8 [2]:

yacc→ rule | yacc rule
rule→ rulebody | rulebody SEMICOLON
rulebody→ RULENAME COLON alt | rulebody BAR alt
alt→ ε | alt TOKEN | alt RULENAME

This should be an LR(2) grammar, since in order to determine whether the next symbol is on

the right hand side of a rule, or the left hand symbol of a new rule, we need to look at the

second lookahead: if the second lookahead is COLON, we know it is the start of another rule,

otherwise it is just another symbol on the right hand side of the current rule. This means we

need to look two tokens ahead to parse the Yacc input file, this is thus an LR(2) grammar.

However, from the parsing machine in Figure 6.8 (the part relevant to shift/reduce conflicts are

shown in figure 6.9), we see only two shift/reduce conflicts in states 9 and state 10. There is no

reduce/reduce conflict. Furthermore, it seems that even if we trace back on the configurations

involved in the shift/reduce conflicts, both will end at state 0, and we obtain no more context

that can be used to resolve the shift/reduce conflicts.

167

Figure 6.8: Parsing machine of the LR(2) grammar for Yacc

168

Figure 6.9: The part of the Yacc grammar parsing machine related to shift/reduce conflicts

169

4) LR(closed) grammars. Chris Clark also mentioned one type of grammar that he calls the

LR(closed) grammar [4]. Such grammars can be deterministically parsed, but with an in-

definite amount of rules pushed to the stack. He said computing a closure for some such

grammars will never terminate due to the halting problem. More investigation is also needed

in this. One such example of such grammars given by him is grammar G6.9 [4]:

S→ a A a | b A b | a B b | b B a
A→ A a
B→ B a
A→ a
B→ a

The part of this grammar’s parsing machine related to the reduce/reduce conflicts is shown

below in Figure 6.10. It can be seen that lane-tracing produces no context information to help

resolving the reduce/reduce conflicts.

Figure 6.10: The part of Chris Clark’s grammar’s parsing machine related to reduce/reduce conflicts

170

Chapter 7

The Latex2gDPS compiler

7.1 Introduction

The latex2gDPS compiler translates Latex source to the gDPS language. There are two mo-

tivations for creating the latex2gDPS compiler. The first is to demonstrate the use of the parser

generator Hyacc. The second is that the creation of such a tool is of interests by itself.

In the work of Holger [40], a general-purpose dynamic programming problem solver called the

DP2PN2Solver was designed and implemented. In this system, a DPFE (Dynamic Programming

Functional Expression) is specified in the gDPS (general Dynamic Programming Specification)

language. Then a D2P compiler translates a DPFE expressed in gDPS to a Bellman net. The

Bellman net, which is represented as a N x N adjacency matrix, is further translated into solver code

in three formats: spreadsheet, Java and PN code. They are then solved by spreadsheet program,

Java program and Petri Net simulator correspondingly. This structure is shown in Figure 7.1.

Figure 7.1: Architecture of the DP2PN2Solver

171

To use this general DP problem solver, one needs to learn the gDPS language. There is a learning

curve associated with it. To remove this learning curve, a solution is to allow the user to specify

the DPFE in a familiar language. A translator then can translate from this language into gDPS, and

make the gDPS language layer transparent to the user. This project is based on this idea. Figure 7.2

shows how the latex2gDPS compiler fits in this system.

Figure 7.2: Adding the latex2gDPS compiler to the architecture of the DP2PN2Solver

7.2 Design of the Latex2gDPS Compiler

7.2.1 Overall Design

The Latex2gDPS compiler is built on the traditional Lex/Yacc system, and in this case, also

Lex/Hyacc. The compiler is written in C. The designed grammar is shown in Appendix C.

A two-pass parse process is used for the compiler. In the first pass the DPFE in latex input file

is scanned into a container data structure of DPFE, and each of the functions, variables, operators

and literals (numbers, constants) gets one entry in the symbol table. Types (number, variable or set)

of the variables and literals are determined from context or use default value. In the second pass,

which is the code generation pass, the obtained information of the DPFE is written into the gDPS

output file.

Right now the processing includes: 1) Translation of the DPFE formula. 2) Translation of the

declarations. 3) Fill in the other sections needed by the gDPS output.

172

One thing special about dynamic programming problems is that each type is different from the

rest. Individual solutions are needed for each type. Thus a comprehensive top-down approach is

hard in practice since there are too many exceptions to handle. Consequently, a bottom-up solution

is taken, such that different types of dynamic programming problems are handled one by one. For

this purpose, a pluggable architecture is used, such that a set of API functions are provided to

incorporate each new DPFE type. Some macros are ready to use to ease the work of writing API

functions. For unhandled cases the user needs to write customized code. When incorporating a new

DPFE type, just provide a C source file and a header file specific for this DPFE type, and compile

again.

Figure 7.3: DPFE Type API of the latex2DPS compiler

7.2.2 Data Structures

An appropriate data structure is needed to represent the DPFE formula. We need to organize

the scanned DPFE formula is such a way that it is easy to translate it to the output gDPS file. The

relevant data structure containers are: 1) the DPFE itself, 2) DPFE optimization function, 3) DPFE

base condition, 4) the goal function of the DPFE, which can be included in DPFE optimization

function or be independent, the current implementation keeps it independent. The data structure of

the DPFE itself is a container of the other three.

173

The goal function needs to keep track of 5) the function name, and 6) the parameter list.

The DPFE optimization function needs to keep track of 7) the optimization (MIN, MAX or

others) used, 8) the decision variable, 9) the decision operator, 10) the decision space, 11) the terms

of the function, including both the operands and the operators, 12) the constraint condition.

The DPFE base condition needs to keep track of 13) the base value, 14) the constraint condition

for this base value. It is possible that more than one base condition is specified, so the DPFE base

condition data structure needs to be implemented as a collection (a list or an array, or something

similar).

Data structures also are used to represent components of the gDPS file. When the DPFE for-

mula in latex format is scanned in, the components of the DPFE formula are translated into the

components corresponding to each section of the gDPS file. Then in the code generation step, the

information can be easily written to the gDPS file.

7.2.3 Use of Special Declarations

Some context information are not available in the DPFE itself. To overcome this problem special

declarations are used to specify such information. Seven declaration types are used:

1) ModuleType: a one word ID

2) ModuleName: a one word ID

3) ModuleGoal: function name([parameters])

4) ModuleBase: list of “function name([parameters]) = value [when (condition list)]”.

5) Dimension: dimension name : list of numbers (separated by “,” in a single array; arrays are

separated by “;”).

6) DataType: list of “type ID” separated by “,”

7) Alias: list of “ID = ID alias” separated by “,”

The order of these declarations does not matter. But only one of each declaration type can be

used. In the declaration, the keyword is enclosed by $ and following by a colon, then the declaration

content.

174

7.3 Current Status

The essential functions and framework of the latex2gDPS compiler have already been estab-

lished.

Problems may exist in some marginal situations, like in the declaration of some bases, general

functions etc. The handling of these should be aided with the gDPS compiler. By feeding the gDPS

output files from the latex2gDPS compiler to the gDPS compiler, we can see whether they work,

and if not, how to correct the problems.

20 DPFE types are collected. The acronyms and full names are listed in Table 7.1. Table 7.2

shows whether they are significant problems (and thus have higher priority to be handled), the source

(which books they are from), and the status of whether they have been handled and included in the

latex2gDPS compiler.

Type Full name
ALLOT
ASMBAL
BST Optimal Binary Search Tree Problem
COV (or SCA) Optimal Covering Problem
DPP (or FPP) Discounted Profits Problem
EDP Edit Distance Problem
ILP Integer Linear Programming Problem
KS01 0/1 Knapsack Problem
LCS Longest Common Subsequence Problem
LSP Longest Simple Path Problem
MCM Matrix Chain Multiplication Problem
ODP (or OFP) Optimal Distribution Problem
PERM (or OST) Optimal Permutation Problem
RAP Production: Reject Allowances Problem
RDP Reliability Design Problem
SCP Stagecoach Problem
SPA Shortest Path in an Acyclic Graph Problem
SPC Shortest Path in an Cyclic Graph Problem
TSP Traveling Salesman Problem
WLV Investment: Winning in Las Vegas Problem

Table 7.1: DPFE types and their full names

175

Type Significant Source 1 Handled
ALLOT Y 3
ASMBAL Y 1
BST Y 1 Y
COV (or SCA) 4 Y
DPP (or FPP) 4
EDP 4
ILP Y 3 Y
KS01 Y 2 Y
LCS Y 1
LSP Y 1 Y
MCM Y 1 Y
ODP (or OFP) Y 3 Y
PERM (or OST) 4
RAP Y 3 Y
RDP 4
SCP Y 3 Y
SPA Y 2 Y
SPC Y 2 Y
TSP Y 2 Y
WLV Y 3 Y

Table 7.2: DPFE types, significance, sources and status

1Source: 1 - Cormen, 2 - unknown, 3 - Hillier & Lieberman, 4 - Other

176

7.4 An Example

An example for the MCM (Matrix Chain Multiplication) DPFE type is given below.

The MCM DPEF and an example of goal and input data are:

f(i, j) =

 min
k∈{i,...,j−1}

{f(i, k) + f(k + 1, j) + di−1dkdj} if i < j

0 if i = j.

goal=f(1,n)
Ai has dimension di−1 ∗ di

D={3,4,5,2,2}
n=4

The corresponding latex specification is:

\begindeclaration
$ModuleType$: MCM
$ModuleName$: MultipleChainMultiplication
$ModuleGoal$: f(0, 0)
$ModuleBase$: f(i, j) = 0 if (i = j)
$Dimension$: d = 3, 4, 5, 2, 2
$Alias$: i = firstIndex, j = secondIndex, d = dimension
\enddeclaration

\beginequation
f(i,j)=
\left\
\beginarray ll
\displaystyle \min k \in n i, \ldots, j-1\
\ f(i,k)+f(k+1,j)+d i-1d kd j n & \mboxif i ¡ j \\
0 & \mboxif i = j.\\
\endarray
\right.
\endequation

177

The output is:

BEGIN

NAME MultipleChainMultiplication;

GENERAL VARIABLES BEGIN
private static int[] d = {3, 4, 5, 2, 2};
GENERAL VARIABLES END

STATE TYPE: (int i, int j);

DECISION VARIABLE: int k;
DECISION SPACE: decisionSet(i, j) = {i, ..., j - 1};

GOAL:
f(1, 4)

DPFE BASE:
f(i, j) = 0 WHEN i = j;

DPFE:
f(i, j)
= MIN {k IN decisionSet}
{
f(t1(i, j, k)) + f(t2(i, j, k)) + r(i, j, k)
};
REWARD FUNCTION:
r(i, j, k) =
d[i - 1] * d[k] * d[j];

TRANSFORMATION FUNCTION:
t1(i, j, k) = (i, k);
t2(i, j, k) = (k + 1, j);

END

178

Chapter 8

Conclusion

LR(1) is the most powerful parsing algorithm for context-free languages. However LR(1) parser

generation was long regarded as computationally infeasible. The compiler community has seen

various parser generators using LALR(1) and LL(k) algorithms, but LR(1) parser generators are

still rare. There are LR(1) algorithms that can reduce the number of states in a parsing machine,

making LR(1) parser generation not much more expensive than LALR(1). It is meaningful to revisit

this field, do an investigation of LR(1) parser generation algorithms and come up with a practical

tool. LR(k) is more expensive than LR(1) and little practical work has been done on it due to the

difficulty. Despite the fact that LR(1) should suffice for the needs of processing most programming

languages, LR(k) should have values in areas such as natural language processing.

In this work we investigated LR(1) parser generation algorithms and implemented a LR(0)/

LALR(1)/LR(1)/LR(k) parser generator Hyacc, which has been released to the open source com-

munity in the hope of bringing the power of LR(1) parsing to life. The interface features of Hyacc

are highly similar to widely used LALR(1) parser generators Yacc and Bison, which makes it easy

to learn and to be accepted by the wide user base of Yacc and Bison. Hyacc is written in ANSI C

and can be easily ported to most platforms.

Hyacc contains these LR(1) algorithms: 1) the Knuth canonical algorithm, 2) Pager’s practical

general method, which combines compatible states during new state generation process of the Knuth

canonical algorithm, 3) Pager’s lane-tracing algorithm which starts from LR(0) parsing machine and

splits states that cause reduce/reduce conflicts in the parsing machine, 4) Pager’s unit production

elimination algorithm, which is not a backbone LR(1) algorithm but related. A lot of details in the

179

implementation are discussed, especially for the second phase of lane-tracing which has not been

discussed in detail before.

The LALR(1) algorithm in Hyacc is implemented by the first phase of the lane-tracing algo-

rithm. It is an alternative to what most people know from the current literature.

We found that Pager’s unit production elimination algorithm leads to redundant states in the

resulting parsing machine, and extended the algorithm to remove redundant states, so as to obtain a

minimal parsing machine and increase parser generation efficiency.

We measured and compared the performance of different LR(1) algorithms as implemented in

Hyacc with each other, and with LALR(1) algorithms as implemented in Hyacc and Bison. The

study was done on the grammars of 13 programming languages. We have shown that with reduced-

space LR(1) algorithms such as the practical general method and the lane-tracing algorithm, the time

and space requirements are not much bigger than the LALR(1) algorithm for these real programming

languages grammars. It is safe to conclude that we can disregard the myth about the impracticality

of LR(1) performance, and take LR(1) as an efficient alternative of its LALR(1) peers.

On the framework of LR(1) parser generation algorithms, three pathways are found in literature

research: the combining path as represented by Pager’s practical general method, the splitting path

as represented by Pager’s lane-tracing algorithm and Spector’s splitting algorithm, and the divide

and conquer path as represented by Korenjak’s partitioning algorithm. We have investigated the

combining and the splitting paths in this work.

We have created a new LR(k) parser generation algorithm called the edge-pushing algorithm,

which is based on the LR(1) lane-tracing algorithm, recursively traces back on relevant configura-

tions to obtain more contexts to resolve reduce/reduce conflicts. The edge-pushing algorithm itself,

corresponding LR(k) storage parsing table and parse engine have all been designed and imple-

mented in Hyacc. The edge-pushing algorithm so far works on LR(k) grammars where lane-tracing

upon increasing k does not form a cycle.

We also have developed a latex2gDPS compiler to demonstrate the use of Hyacc.

180

Chapter 9

Future Work

9.1 Study of More LR(1) Algorithms

Currently we have studied and implemented the practical general method on weak compatibility.

An extension of the practical general method is based on strong compatibility, which can possibly

generate a more compact parsing machine but is more computationally demanding. It would be

interesting to investigate the performance and see whether it might be worthwhile to apply it in

addition to weak compatibility in some cases.

The partitioning approach to LR(1) is not studied in this work due to limited time. There are

issues worth study related to this approach, such as the partition strategy.

9.2 Issues in LR(k) Parser Generation

There are many issues to explore in LR(k) parser generation.

The current edge-pushing algorithm for LR(k) works for situations where no cycles are involved

in lane-tracing upon increasing k. If there are cycles involved, we have to introduce a cache feature

to avoid infinitely tracing down the cycles. Branches where two lanes merge into each other do not

have the problem of infinitely tracing down cycles, but are similar in that we can use a cache to

avoid redundant work.

181

It will also be interesting to apply LR(k) algorithm to the study of natural languages. We already

see one example of applying LR(k) to resolve the reduce/reduce conflict in a simple LR(5) natural

language grammar. We can try our algorithm on more complex natural languages grammars. For

natural language processing, one common technique currently employed is GLR algorithm with

LALR or SLR engine. GLR keeps separate stacks for different parse alternatives and is very ex-

pensive in both time and space. It is more expensive than LR(k). It also cannot tell ambiguity apart

from deterministic LR(k) grammars due to the way it handles the grammar using multiple stacks.

LR(k) can serve as a good alternative to GLR.

For the generated parser using lane-tracing, it is also interesting to see if we can move lane-

tracing from parser generation time to compile time, which means imbedding the lane-tracing algo-

rithm into the parse engine. This way we can avoid the cost of generation and storage of the LR(k)

parsing table. It will be intriguing to see how well this works.

9.3 Ambiguity

The LR(1) algorithms discussed in this work are designed for LR(1) algorithms only, and cannot

be applied to grammars that are not LR(1). For example, the unit production elimination algorithm

generates shift/shift conflicts for ambiguous grammars. Since ambiguous grammars exist widely

in practice, it is useful if we can extend the current LR(1) algorithms to better handle ambiguous

grammars.

9.4 More Work on Hyacc

The Hyacc parser generator is an efficient and practical tool for LR(1) parser generation. It has

been released to the open source community for some time. Some features are not yet completed,

such as the directives %union, %type and %nonassoc. The LR(k) part also is not yet fully working.

We need to finish these and enrich its features.

We hope Hyacc can gain wide acceptance in the industry. We also hope to collaborate with

people in the compiler industry on LR(1) issues.

182

Appendix A

Hyacc User Manual

183

HYACC User Manual

Created on 3/12/07. Last modified on 3/27/09.

Version 0.97

Hyacc comes under the GNU General Public License
(Except the hyaccpar file, which comes under BSD License)

Copyright © 2007, 2008, 2009. Xin Chen
Department of Information and Computer Science, University of Hawaii
Please send all bug report and comments to chenx@hawaii.edu

This documentation introduces Hyacc and its usage.

1. Overview
1.1 Background
1.2 Feature list
1.3 A little note on the license

2. Compile and Installation
2.1 For Unix/Linux/Cygwin users
2.2 For windows users

3. Usage
3.1 Input file
3.2 Command line switches
3.3 Output file

4. Future perspective

5. References

 185

1. Overview

1.1 Background

Many people have used Yacc. It is a LALR(1) compiler generator, often used with the
lexical analyzer Lex to create compilers. There are many variations of Yacc, like Bison
and Berkeley yacc.

Hyacc is similar to Yacc in that it is a compiler generator. It is different from yacc in that
it is a LR(0)/LALR(1)/LR(1)/LR(k) compiler generator. It can accept all LR(1)
grammars. Hyacc also contains LR(0) and LALR(1) algorithms, and a partially working
LR(k) algorithm that allows it to accept some LR(k) grammars. This is more powerful
than Yacc.

Hyacc is pronounced as “HiYacc”, means Hawaii Yacc.

In the past people think LR(1) compiler generator is hard to implement, and the process
of generating a LR(1) parser is very expensive in time and space. However, Hyacc shows
that, with optimization algorithms and proper choice of data structures, a LR(1) parser
generator can be close to LALR(1) parser generators in compactness and performance in
many cases.

Specifically, based on the original LR(1) algorithm [Knuth], the practical general method
[Pager77] is used to combine (weakly) compatible states to reduce the state space and
increase the performance. Based on this, another optimization of unit production
elimination [Pager77b] and its extension are also used in the hope of further reducing the
size of the state space.

Besides, Hyacc also implemented LR(1) parser generation based on the lane-tracing
algorithm [Pager77c][Pager73].

The LR(k) algorithm in Hyacc is called the edge-pushing algorithm, which recursively
applies lane-tracing to obtain more contexts to resolve reduce/reduce conflict.

Hyacc tries to be backward compatible with Yacc and Bison in the format of input file
and command line switches.

Hyacc was developed under Cygwin, and has been tested in Fedora Core 4.0, Solaris and
Suse 10.3. It is ANSI C compliant, which makes it extremely easy to port to other
platforms.

 186

1.2 Feature list

Current features:

1) Implements the original Knuth LR(1) algorithm [Knuth].
2) Implements the practical general method (weak compatibility) [Pager77]. This is

a LR(1) algorithm.
3) Removes unit productions [Pager77b].
4) Removes repeated states after removing unit productions.
5) Implements the lane-tracing algorithm [Pager77c][Pager73]. This is a LR(1)

algorithm.
6) Supports LALR(1) based on the lane-tracing algorithm phase 1.
7) Supports LR(0).
8) Implements the edge-pushing LR(k) algorithm. So far this algorithm can accept

those LR(k) grammars where lane-tracing on increasing k do not involve cycle.
9) Allows empty productions.
10) Allows mid-production actions.
11) Allows these directives: %token, %left, %right, %expect, %start, %prec.
12) In case of ambiguous grammars, uses precedence and associativity to resolve

conflicts. When unavoidable conflicts happen, in case of shift/reduce conflicts the
default action is to use shift, in case of reduce/reduce conflicts the default is to use
the production that appears first in a grammar.

13) Is compatible to yacc and bison in the ways of input file format, ambiguous
grammar handling, error handling and output file format.

14) Works together with Lex. Or the users can provide the yylex() function
themselves.

15) If specified, can generate a graphviz input file for the parsing machine.
16) If specified, the generated compiler can record the parsing steps in a file.
17) Is ANSI C compliant.
18) Rich information in debug output.

What’s not working so far and to be implemented:

1) Hyacc is not reentrant.
2) Hyacc does not support these Yacc directives: %nonassoc, %union, %type.
3) The optimization of removing unit productions can possibly lead to shift/shift

conflicts in case of grammars that are ambiguous or not LR(1), and thus should
not be applied in such situation.

4) Full LR(k) where the cycle problem can be solved.

 187

1.3 A little note on the license

All the source files of Hyacc comes under the GPL license. The only exception is the file
hyaccpar, which comes under the BSD license and is the skeleton parser driver of hyacc
output. This should guarantee that Hyacc itself is protected by GPL, but the parser
generators created by Hyacc can be used in both open source and proprietary software.
This addresses the problem that Richard Stallman discussed in “Conditions for Using
Bison” of his Bison 1.23 manual and Bison 1.24 manual.

 188

2. Compilation and installation.

2.1 For Unix/Linux/Cygwin users

These files are included in the package for Unix/Linux/Cygwin users:

lane_tracing.h – The header file for lane-tracing functions.
mrt.h – The header file for multi-rooted tree.
stack_config.h – The header file for configuration stack.
y.h – The header file.
get_options.c – Gets command line switches.
gen_compiler.c – Generates compiler from the parsing machine created in y.c.
gen_graphviz.c – Generates graphviz input file for the parsing machine.
get_yacc_grammar.c – Parses input grammar file and feeds the result to y.c.
hyacc_path.c – Gives path information of hyaccpar and hyaccmanpage.
inst.c – Recreates hyacc_path.c at compilation time.
lr0.c – Contains functions for the LR(0) algorithm.
lrk.c – Contains functions for the LR(k) algorithm.
lrk_util.c – Contains utility functions for the LR(k) algorithm.
lane_tracing.c – Contains functions for the lane-tracing algorithm.
mrt.c – Contains functions for multi-rooted tree used in unit production elimination.
queue.c – A circular, expandable queue of integer.
stack_config.c – Contains functions for configuration stack.
state_hash_table.c – A hash table that makes searching states easy.
symbol_table.c – A hash table that stores information of grammar symbols.
upe.c – contains functions for unit production elimination.
version.c – Gives version information of Hyacc.
y.c – Creates LR(1) parsing machine, and applies the three optimizations.
hyaccpar – The LR(0)/LALR(1)/LR(1) compiler parse engine.
hyaccpark – The LR(k) compiler parse engine.
hyaccmanpage – The man page file.
hyacc.1 – Used to create the man page file.
makefile – The make file.

The makefile file is the utility used for compilation.

The options provided by the makefile are:

1) If compile the first time, type “make release” to compile the source code. This
will take the INSTALL_PATH and feed it to inst.c, which recreate hyacc_path.c
using the path information. Then it does the compilation to create the executable
file hyacc.

 189

2) If NOT compile the first time, type “make” to compile the source code, this is
different from “make release” in that it does not create a new hyacc_path.c file.

3) Type “make debug” will do the same thing as “make release”, but also use the –g
switch, so the user can use gdb debugger to debug the hyacc executable if
anything goes wrong.

4) Type “make clean” will remove the hyacc executable file.
5) Type “make install” will do all the work of “make release”, and then copy

executable hyacc, hyaccpar and hyaccmanpage to the destination directory.
6) Type “make uninstall” will tell the user what files to remove. The user needs to

follow the instruction and manually remove the files hyacc, hyaccpar and
hyaccmanpage from the installation folder.

7) Type “make dist” will create a distribution package in the format of hyacc_mm-
dd-yy.tar.gz.

A typical process of compile and install Hyacc is:

If the user wants to install to the current directory:

1) Type “make release” will do all the work.

If the user wants to install to a different directory:

1) Modify the INSTALL_PATH macro at the top of the makefile. This tells
where the user wants to install Hyacc. By default, this is the current directory.
If you want the files to be installed to another location, make sure you have the
permission to copy files there.

2) Type “make install”. That’s all.

2.2 For Windows users

For the files included in the package for windows users, the only difference from the
package for Unix/Linux/Cygwin users is that now use the file hyacc_dos_path.c instead
of hyacc_path.c, and there is no inst.c.

In hyacc_dos_path.c, if USE_CUR_DIR is defined as 1 (this is the default value), then
the compiled binary uses current directory to locate resource files (hyaccpar and
hyaccmanpage). If USE_CUR_DIR is defined as 0, then it uses C:\windows as the
default installation path. The user should change this file if want to install to different
location.

The user should have a C compiler in windows, like Microsoft Visual Studio 6.0. Using
Microsoft Visual Studio 6.0 as an example, these steps are required:

 190

1) Unzip the package.
2) Create an empty win32 console application from File � New.
3) Switch to File View, add all the *.c files to “Source Files”, and add *.h to “Header

Files”.
4) From Build � Set Active Configuration, choose “Release”.
5) Build hyacc.exe using the Build menu or use the short-cut key F7.
6) Now the hyacc.exe is successfully built.
7) In hyacc_path_dos.c, by default USE_CUR_DIR is defined as 1. So hyacc uses

the current directory to locate resource files (hyaccpar and hyaccmanpage).
Otherwise, if USE_CUR_DIR is defined as 0, then C:\windows is the default
installation path, and the user should copy hyacc.exe, hyaccpar and
hyaccmanpage to C:\windows. This finishes the installation. Since C:\windows is
on the system search path of windows, the user now can use the command
“hyacc” anywhere in a dos window.

8) If the user chooses to install to a different location, he can modify
hyacc_dos_path.c to tell hyacc.exe where to look for hyaccpar and hyaccmanpage
files. He can use hyacc in the folder in which it resides. If he wants to use hyacc
anywhere in the system, he needs to go to “My Computer � Properties �
Advanced � Environment variables” (in windows XP) and add hyacc’s
installation path to the PATH variable.

3. Usage

Type “hyacc –h” will show basic help message.
Type “hyacc –m” will show the man page file.

3.1 Input file

The input file format is compatible with Yacc and Bison. The user can check any
Yacc/Bison manual or search on the Internet for the input file format.

The input file by default ends with suffix “.y”, but other suffix are allowed too.

$accept, $end and $placeholder are reserved words used by Hyacc. The user should NOT
use these variables.

The user can use “/*” and “*/” to quote comments in each section of the input file.

Basically there are three sections, separated by “%%” directives.

Note: all “%%” and “%…” directives should start from the first column of the line.

 191

3.1.1 Declaration section

The first section is declaration section. Between “%{“ and “%}” is the declarations used
by the output compiler file.

Then these Yacc/Bison-compatible directives declare terminal tokens used by Hyacc:

%token – declares a terminal token to be returned by Lex or user-defined yylex()
function.

%start – declares the start symbol of the entire grammar. Hyacc adds an extra rule “$start
� start_symbol” as the first rule. The result grammar is called the augmented grammar
of the input grammar. The start symbol is a non-terminal.

%left – this declares a terminal token, as well as its precedence and associativity (left).

%right – this declares a terminal token, as well as its precedence and associativity (right).

All tokens declared by %left and %right have precedence defined by the relative location
of the declaration. Tokens declared by the same %left or %right declaration have the
same precedence. For tokens declared by different %left or %right, those appear later
have high precedence. For example

%left ‘+’ ‘-‘
%left ‘*’ ‘/’

Then ‘+’ and ‘-‘ have the same precedence, so are ‘*’ and ‘/’. But ‘*’ and ‘/’ have higher
precedence than ‘+’ and ‘-‘.

These Yacc directives are not supported yet: %nonassoc, %union, %type, %pure_parser.
There are more directives used by Bison, those are not supported and ignored by Hyacc at
this time. In summary, only %start, %token, %left, %right, %expect and %prec are
supported by Hyacc so far.

3.1.2 Rules section

The second section is the rules section, where the user specifies all the grammars. %prec
directive can be used in this section at the end of a rule to specify the context-dependent
precedence and associativity of the rule. For example: A � - C %prec UNARY declares

 192

this rule’s precedence and associativity to be that of token UNARY, which should be
declared in the declaration section.
In the rules section the user can put semantic actions of the rules at the end of each rule,
quoted by “{“ and “}”. $$ indicates the value of the current rule. $n (n = 1, 2, 3…)
indicates the value of the nth term on the RHS. For example:

A : B ‘+’ C { $$ = $1 + $2; } /* $1 is the value of B, $2 is the value of C. */
 ;

Mid-action are not supported yet. Mid-actions are semantic actions in the middle of the
RHS of a rule. For example:

A : B { $$ = $1; } ‘+’ C
 ;

3.1.3 Code section

The third section is the code section, where the user puts all the other code he wants to go
in the compiler file.

3.1.4 Example

An example hyacc input file is:

/* See http://www.gnu.org/software/bison/manual/html_mono/bison.html */
/* Infix notation calculator. */

%{
 #define YYSTYPE double
 #include <math.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <ctype.h>
 int yylex (void);
 void yyerror (char const *);
 char * cursor = "#";
%}

/* Bison declarations. */
%token NUM
%left '-' '+'
%left '*' '/'
%left NEG /* negation--unary minus */
%right '^' /* exponentiation */

%% /* Grammar rules and actions follow. */

 193

 input: /* empty */
 | input line
 ;

 line: '\n' { printf ("\n%s ", cursor); }
 | exp '\n' { printf ("\t%.10g\n%s ", $1, cursor); }
 | error '\n' { yyerrok; }
 ;

 exp: NUM { $$ = $1; }
 | exp '+' exp { $$ = $1 + $3; }
 | exp '-' exp { $$ = $1 - $3; }
 | exp '*' exp { $$ = $1 * $3; }
 | exp '/' exp { $$ = $1 / $3; }
 | '-' exp %prec NEG { $$ = -$2; }
 | exp '^' exp { $$ = pow ($1, $3); }
 | '(' exp ')' { $$ = $2; }
 ;
%%

 /* The lexical analyzer returns a double floating point
 number on the stack and the token NUM, or the numeric code
 of the character read if not a number. It skips all blanks
 and tabs, and returns 0 for end-of-input. */

 #include <ctype.h>

 int
 yylex (void)
 {
 int c;

 /* Skip white space. */
 while ((c = getchar ()) == ' ' || c == '\t')
 ;
 /* Process numbers. */
 if (c == '.' || isdigit (c))
 {
 ungetc (c, stdin);
 //ungetc (c);
 scanf ("%lf", &yylval);
 return NUM;
 }
 /* Return end-of-input. */
 if (c == EOF)
 return 0;
 /* Return a single char. */
 return c;
 }

 int

 194

 main (void)
 {
 printf("%s ", cursor);
 return yyparse ();
 }

 #include <stdio.h>

 /* Called by yyparse on error. */
 void
 yyerror (char const *s)
 {
 fprintf (stderr, "%s\n%s", s, cursor);
 }

Save this file as “example.y”, type command “hyacc example.y”. This will generate
y.tab.c. Note that we have yylex() defined in “example.y” so we don’t need Lex in this
case. Now type “gcc y.tab.c –o example” will create the compiler file “example”. Type
“./example”, you can enter mathematical expressions like “-1.2 + 3” and the compiler
will give results.

 195

3.2 command line switches

Options are given in one or two forms: either a dash followed by a single letter, or two
dashes followed by a long option name. Single letter switches are supported for all the
options. Long name switches are supported for some options.

 -b fileprefix
 --file-prefix==fileprefix
 Specify a prefix to use for all hyacc output file names. The
 names are chosen as if the input file were named fileprefix.c.

 -c
 Use this switch to not generate parser files (y.tab.c and
 y.tab.h). This is useful when the user only wants to use the -v
 and -D switches to parse the grammar and check the y.output file
 about the grammar's information.

 -c generally is used with -v, -D and -C.

 -C
 For the unit production removal optimization (when -O2 or -O3 is
 used), if a unit production rule has semantic action, when it is
 removed the semantic action won't be preserved, so the output
 compiler will miss some code.

 To solve this problem, by default HYACC adds a placeholder non-
 terminal to unit production rules with actions, so they won't be
 removed. E.g., from
 program : expression {printf("answer = %d\n", $1);}
 ;
 to
 program : expression $PlaceHolder {printf("answer = %d\n", $1);}
 ;
 $PlaceHolder : /* empty */
 ;

 If the -C switch is used, this default action will not be taken.
 This is used when the user wants to just parse the grammar and
 does not care about generating a useful compiler. Specifically,
 -C is used together with switch -c.

 -d
 --define
 Write an extra output file containing macro definitions for the
 token type names defined in the grammar.

 The file is named y.tab.h.

 This output file is essential if you wish to put the definition
 of yylex in a separate source file, because yylex needs to be
 able to refer to token type codes and the variable yylaval. In

 196

 such case y.tab.h should be included into the file containing
 yylex.

 -D
 Change the print option to debug file y.output. A user who
 checks the debug file should assume certain degree of knowledge
 to the LR(1) compiler theory and optimization algorithms.

 If the -v options is used, a debug file y.output will be gener-
 ated when hyacc parses the grammar file. Use of -D switch will
 automatically turn on the -v switch, and will allow to specify
 what kind of information to be included into y.output.

 By default, use -v will output the information about the states,
 plus a short statistics summary of the number of the grammar's
 terminals, nonterminals, grammar rules and states. like the
 y.output file of yacc.

 -D should be followed by a parameter from 0 ~ 14:

 -D0
 Include all the information available.

 -D1
 Include the grammar.

 -D2
 Include the parsing table.

 -D3
 Include the process of generating the parsing machine, basi-
 cally, the number of states and the current state in each cycle.

 -D4
 This is useful only if at the time of compilation, in y.h
 USE_CONFIG_QUEUE_FOR_GET_CLOSURE is set to 0. This then will
 include the information of combining compatible configurations:
 the number of configurations before and after the combination.
 -D4 can be used together with -D3.

 -D5
 Include the information of the multi-rooted tree(s) built for
 the optimization of removing unit productions.

 -D6
 Include the information in the optimization of removing unit
 productions. Specifically, the new states created and the origi-
 nal states from which the new states are combined from.

 -D7
 Include the information of the step 4 in the optimization of
 removing unit productions. Specifically, this shows the states
 reachable from state 0.

 -D8
 Show the entire parsing table after removing unit productions,

 197

 including those states that will be removed.

 -D9
 Show a list of configurations and the theads of the strings
 after the scanning symbol.

 -D10
 Include information of the symbol hash table.

 -D11
 Include the information of shift/shift conflicts if any. This
 happens when the input grammar is not LR(1) or ambiguous, and
 the optimization of removing unit production is used. The occur-
 rence of shift/shift conflicts means the optimization of remov-
 ing unit productions (-O2 and -O3) cannot be applied to this
 grammar.

 -D12
 NOT to include the default information about states when the -v
 option is used. Use -D12 to show only the short statistics sum-
 mary, and not the states list.

 -D13
 Include the statistics of configurations for each state, and
 also dump the state hash table.

 -D14
 Include the information of actual/pseudo states. An actual
 state number is the row number of that state in the parsing ta-
 ble. After the step of unit production removal, some states are
 removed but their rows still remain in the parsing table, thus
 the state's pseudo state number (counted by ignoring those
 removed states/rows) will be different.

 -D15
 Shows the originator and transitor list of each configuration,
 as well as the parent state list of each state. This is rele-
 vant when lane-tracing is used.

 -g
 --graphviz
 Generate a graphviz input file for the parsing machine.

 -h
 --help Print a usage summary of hyacc.

 -K
 --lrk Apply the LR(k) algorithm. The LR(k) algorithm is called the
 edge-pushing algorithm, which is based on lane-tracing, using a
 lane-tracing table based method to split states. In other words,
 this is extension of the option -Q (--lane-tracing-ltt) for
 LR(k) where k > 1. So far this works for those LR(K) grammars

 198

 where lanes involved in lane-tracing upon increasing k do not
 contain cycle.

 -l
 --nolines
 Don't put any #line preprocessor commands in the parser file.
 Ordinarily hyacc puts them in the parser file so that the C com-
 piler and debuggers will associate errors with your source file,
 the grammar file. This options causes them to associate errors
 with the parser file, treating it as an independent source file
 in its own right.

 -m
 --man-page
 Show man page. Same as "man hyacc". This is used when the man
 page file exists in the same directory as the hyacc executable.
 So if installation moves this man page file to another location,
 you must use "man hyacc".

 -o outfile
 --output-file==outfile
 Specify the name outfile for the parser file.

 The other output files' names are constructed from outfile as
 described under the v and d switches.

 -O
 Specify the kind of optimization used to parse the yacc input
 file.

 Basically, three optimizations are used: 1) Combine compatible
 states based on weak compatibility. 2) Remove unit productions.
 3) Remove repeated states after optimization 2).

 The -O switch should be followed by a parameter from 0 to 3:

 -O0
 No optimization is used.

 -O1
 Optimization 1) is used.

 -O2
 Optimizations 1) and 2) are used.

 -O3
 Optimizations 1), 2) and 3) are used.

 By default, when -O switch is not specified, the optimization 1)
 of combining compatible states is used. So "hyacc file.y" is
 equivalent to "hyacc file.y -O1" or "hyacc -O1 file.y".

 199

 -P
 --lane-tracing-pgm
 Use LR(1) based on the lane-tracing algorithm. The lane-tracing
 algorithm first obtains the LR(0) parsing machine, then use
 lane-tracing to obtain the contexts for those states where
 shift/reduce or reduce/reduce conflicts exist. If conflicts are
 not resolved for some states, then the involved states are
 splitted using the practical general method.

 -Q
 --lane-tracing-ltt
 Use LR(1) based on the lane-tracing algorithm. The lane-tracing
 algorithm first obtains the LR(0) parsing machine, then use
 lane-tracing to obtain the contexts for those states where
 shift/reduce or reduce/reduce conflicts exist. If conflicts are
 not resolved for some states, then the involved states are
 splitted using a lane-tracing table based method.

 -R
 --lalr1
 Use LALR(1) algorithm based on lane-tracing phase 1.

 -S
 --lr0 Use LR(0) algorithm.

 -t
 --debug
 In the parser files, define the macro YYDEBUG to 1 if it is not
 already defined, so that the debugging facilities are compiled.
 When the generated compiler parses an input yacc file, the parse
 process will be recorded in an output file y.parse, which
 includes all the shift/reduce actions, associated state number
 and lookahead, as well as the content of state stack and symbol
 stack.

 -v
 --verbose
 Write an extra output file containing verbose descriptions of
 the parser states and what is done for each type of lookahead
 token in that state.

 This file also describes all the conflicts, both those resolved
 by operator precedence and the unresolved ones.

 The file's name is y.output.

 -V
 --version
 Print the version number of hyacc and exit.

 200

 EXAMPLES
 Assume the input grammar file is arith.y.

 The user wants y.tab.c only:
 hyacc arith.y

 The user wants y.tab.c and y.tab.h:
 hyacc -d arith.y

 The user wants the generated compiler create y.parse when parsing a
 program:
 hyacc -dt arith.y
 or
 hyacc arith.y -d -t

 The user wants y.ta.b, y.tab.h, and create a y.output file when parsing
 the grammar:
 hyacc -dv arith.y

 The user wants, y.tab.c, y.tab.h, y.output and wants to include no
 other information than the short statistics summary in y.output:
 hyacc -dD12 arith.y

 Here -D12 will suppress the states list.

 The user wants y.tab.c and y.tab.h, use optimization 1) only, and wants
 a default y.output:
 hyacc -d -O1 -v arith.y
 or
 hyacc -dO1v arith.y

 The user wants to parse the grammar and check y.output for information,
 and doesn't need a compiler. While use all the optimizations, he wants
 to keep those unit productions with semantic actions:
 hyacc -cCv arith.y

 201

3.3 output files

y.tab.c and y.tab.h
The output compiler file is y.tab.c. If the –d switch is used, y.tab.h is created to be
included by other source files, such as lex.yy.c created by Lex.

y.output
If the –v switch is used, y.output will be created, which contains various information
about the LR(1) parser generator depending on the –Dn switch.

y.parse
If the –t switch is used, y.parse will be created when running the created compiler on a
source file, explaining step by step the parsing process.

y.gviz
If the –g switch is used, y.gviz will be created, which can be used as the input file for
graphviz to generate a graph for the parsing machine.

The user can change the output file names using the –o and –b switches.

4. Future perspective

The future will see Hyacc:

1) More complete in being compatible with the interface of Yacc/Bison.
2) More information in y.output file.
3) More optimizations to increase the performance.
4) More compression of the created parser tables.

 202

5. References

[Aho] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. (1986)

[Knuth] Donald E. Knuth. On the translation of languages from left to right. Information
& Control, 8(6):607–639. (1965)

[Nigel] Nigel P. Chapman. LR Parsing: Theory and Practice. (1987)

[Pager77] David Pager. A Practical General Method for Constructing LR(k) Parsers. Acta
Informatica 7, 249 – 268 (1977)

[Pager77b] David Pager. Eliminating Unit Productions from LR Parsers. Acta
Informatica 9, 31 – 59 (1977)

[Pager77c] David Pager. The Lane-Tracing Algorithm for Constructing LR(k) Parsers
and Ways of Enhancing Its Efficiency. Information Sciences 12, 19 – 42 (1977)

[Pager73] David Pager. The lane tracing algorithm for constructing LR(k) parsers.
Proceedings of the fifth annual ACM symposium on Theory of computing, 172 - 181
(1973)

Appendix B

Simple Grammars Used for Testing

These are the 17 simple grammars used for testing in Chapter 5. G1, G4, G5, G6, G7, G8, G9,

G10, G14, G15, G16 are from [41], G2 from [1], G3 from[7], G11, G12, G13 from [46], G17 from

[47]. Of these grammars, G2 and G3 are actually the same grammar and are LR(1). G6 is a non-

LR(1) grammar (contains shift/reduce conflicts in LR(1) parsing machine). The rest are LALR(1)

grammars. In the grammar rules, ε means empty string.

G1

E→ E + T | T
T→ T * a | a

G2

def→ param spec return spec ,

param spec→ type | name list : type

return spec→ type | name : type

type→ ID

name→ ID

name list→ name | name , name list

G3

def→ param spec return spec COMMA

param spec→ type | name list COLON type

return spec→ type | name COLON type

203

type→ ID

name→ ID

name list→ name | name COMMA name list

G4

E→ E + T | T
T→ (E) | n

G5

E→ E + T | T
T→ T * a | a | (E)

G6

E→ E + T n | T
T→ a | (E n) | n a

n→ ε | num

G7

S→ d i A

A→ A T | ε
T→M | Y | P | B
M→ r | c
Y→ x | f
P→ n | o
B→ a | e

G8

A→ A B | B
B→ C | D
C→ x y

D→ s E

E→ E + y | y |

204

G9

E→ E + T | T
T→ a | num | (E)

G10

E→ E o T | T
T→ a | (E)

o→ x | ε

G11

G→ A b | B d

A→ C

B→ C

C→ e e

G12

G→ A x | D y | J z | E
A→ B | B u

B→ C

D→ C

C→ E | K | K s

E→ f | f r

J→ K

K→ H

H→ h h

G13

G→ E c | c E c

E→ A c

A→ B | B E

B→ b b

205

G14

program→ list statement

list statement→ statement | list statement statement

statement→ assign statement | input statement | output statement | if statement | error ‘;’

assign statement→ identifier = expression ‘;’

input statement→ Input identifier ‘;’

output statement→ Output expression ‘;’

if statement→ If (expression = expression) { list statement } | If (error) { list statement }
expression→ expression + term | term

term→ identifier | number

G15

program→Main ‘;’ declaration list code start statement list End Main ‘;’

declaration list→ declaration list declaration | declaration

declaration→ Int identifier list ‘;’

identifier list→ identifier list ‘,’ Identifier | Identifier

code start→ ε

statement list→ statement | statement list statement

statement→ assignment statement | input statement | output statement | do statement | error ‘;’

assignment statement→ Identifier = expression ‘;’

input statement→ Input Identifier ‘;’

output statement→ Output expression ‘;’

do statement→ do head statement list End Do ‘;’

do head→ Do Identifier = Number To Number ‘;’

expression→ expression + primary | primary

primary→ Identifier | Number

G16

program→Main ‘;’ declaration list statement list End Main ‘;’

|Main ‘;’ statement list End Main ‘;’

declaration list→ declaration list declaration | declaration

declaration→ Int identifier list ‘;’

identifier list→ identifier list ‘,’ Identifier | Identifier

206

statement list→ statement list statement | statement

statement→ assign statement | input statement | output statement | while statement

| if statement | error

while statement→ while prefix statement list Wend ‘;’

while prefix→WHILE condition |WHILE error

WHILE→While

condition→ expression Eq expression | expression Ne expression | expression Le expression

if statement→ if prefix statement list End If ‘;’

if prefix→ IF condition | IF error

IF→ If

assign statement→ Identifier = expression ‘;’

input statement→ Input Identifier ‘;’

output statement→ Output expression ‘;’

expression→ expression + term | expression - term | term

term→ Identifier | Number | (expression)

G17

G→ G a | a Y d | b Y c | c V e | d W f | e W e

Y→ X

X→ e | e g

W→ P

V→ U

U→ a Y Z

Z→ a Q | P | ε
P→ b U

Q→ c | ε

207

Appendix C

Latex2gDPS Compiler Grammar

program→ declaration BEGIN EQN label eqn body END EQN

declaration→ BEGIN DECLARATION declaration list END DECLARATION

| BEGIN DECLARATION END DECLARATION

declaration list→ declaration list declaration item line

| declaration item line

declaration item line→ declaration item NEW LINE list

| declaration item

declaration item→ module type

| module name

| dimension

| datatype

| goal

| base

| alias

NEW LINE list→ NEW LINE list NEW LINE

| NEW LINE

module type→MODULE TYPE ‘:’ ID

module name→MODULE NAME ‘:’ ID

dimension→ DIMENSION ‘:’ dimension list

dimension list→ dimension list ‘,’ dimension item

| dimension list ‘,’ NEW LINE dimension item

208

| dimension item

dimension item→ dimension name EQ ‘{’ array list2 ‘}’
| dimension name EQ ‘{’ expr list ‘}’
| dimension name EQ term

array list2→ array list ‘;’ expr list

array list→ array list ‘;’ expr list

| expr list

dimension name→ term

datatype→ DATA TYPE ‘:’ datatype list

datatype list→ datatype list ‘,’ datatype item

| datatype item

datatype item→ ID ID

goal→MODULE GOAL ‘:’ FXN NAME expr list ‘)’

base→MODULE BASE ‘:’ module base list

module base list→ module base list ‘;’ NEW LINE list module base

| module base list ‘;’ module base

| module base

module base→ fxn EQ expr module base cond

module base cond→ ε

| IF module base logic expr

module base logic expr→ module base relation expr logic op module base relation expr

| module base relation expr

module base relation expr→ expr relation op expr

| ‘(’ module base logic expr ‘)’

alias→ ALIAS ‘:’ alias list

alias list→ alias list ‘,’ alias item

| alias item

alias item→ ID EQ ID

label→ ε

| LABEL ‘{’ ID ‘}’
eqn body→ fxn EQ fxn val

| fxn NEW LINE list EQ fxn val

fxn→ FXN NAME expr list ‘)’

209

fxn val→ LEFT BRACKET LEFT formular array RIGHT PERIOD

| formular item dot

formular array→ BEGIN ARRAY LL formular lines END ARRAY

| ε
formular lines→ formular lines formular line

| formular line

formular line→ formular ‘&’ condition NEW LINE

formular→ style formular

| expr

style formular→ ‘{’ DISP STYLE formular item ‘}’
formular item→ opt hd BRACKET LEFT formular expr BRACKET RIGHT

formular expr→ formular expr operator term

| formular expr ‘∧’ ‘{’ term ‘}’ | formular expr term

| term

| ‘|’ formular expr ‘|’
expr→ expr operator term

| expr ‘∧’ ‘{’ term ‘}’
| expr set operator term

| expr term

| term

| ‘|’ expr ‘|’
| ‘{’ expr list ‘}’
| ‘-’ term %prec NEG

term→ indexed term

| ID
| NUMBER

| INFINITY

| greek symbol

| BRACKET LEFT expr BRACKET RIGHT

| EMPTY SET

| DOTS

| fxn

| ‘(’ expr list ‘)’

210

| QUAD

greek symbol→ EPSILON

| ALPHA

| BETA

indexed term→ INDEXED ID expr list ‘}’
expr list→ expr list ‘,’ expr

| expr

opt hd→ m hdr term set operator set ‘}’
| m hdr term ‘}’

m hdr→MIN HEAD

|MAX HEAD

set→ expr

| BRACKET LEFT expr ‘,’ DOTS ‘,’ expr BRACKET RIGHT

| BRACKET LEFT expr ‘,’ expr BRACKET RIGHT

set operator→ IN

| NOTIN

| CUP

condition→MBOX ‘{’ IF logic expr dot ‘}’ dot

|MBOX ‘{’ OTHERWISE dot ‘}’ dot

dot→ ε

| PERIOD

| ‘,’
logic expr→ relation expr logic op relation expr

| relation expr

relation expr→ ‘$’ relation expr list ‘$’

relation expr list→ expr relation op expr

| relation expr list relation op expr

logic op→ AND | OR

relation op→ LT | GT | EQ | NE | LE | GE

operator→ ‘+’ | ‘-’ | ‘*’ | ‘/’

211

Bibliography

[1] Bison manual. http://www.gnu.org/software/bison/manual/html mono/bison.html#Mystery-

Conflicts.

[2] Examples of LR(2) grammars. http://www.cs.man.ac.uk/ pjj/complang/g2lr.html.

[3] GNU Bison. http://www.gnu.org/software/bison/.

[4] LR(closed) grammars. http://compilers.iecc.com/comparch/article/08-12-102.

[5] LRSYS, PASCAL LR(1) Parser Generator System. http://www.nea.fr/abs/html/nesc9721.html.

[6] New LR parser generation algorithm. http://compilers.iecc.com/comparch/article/06-05-006.

[7] Ocamlyacc tutorial. http://plus.kaist.ac.kr/∼shoh/ocaml/ocamllex-ocamlyacc/ocamlyacc-

tutorial/sec-mysterious-reduce-reduce-conflicts.html.

[8] Parser Generator Dr. Parse. http://www.softpedia.com/get/Programming/Coding-languages-

Compilers/Dr-Parse.shtml. Now invalid: http://www.zpnetics.com/.

[9] Parser Generator Dragon. http://freshmeat.net/projects/dragon-pg/.

[10] Parser Generator Parsing.py: An LR(1) parser generator with CFSM/GLR drivers.

http://compilers.iecc.com/comparch/article/07-03-076.

[11] Toolset COCOM & scripting language DINO. http://sourceforge.net/projects/cocom/.

[12] Yacc++ and the Language Objects Library. http://www.world.std.com/∼compres/.

[13] “Yacc-keable” Grammars. http://www.angelfire.com/ar/CompiladoresUCSE/COMPILERS.html.

[14] Alfred V. Aho and Jefferey D. Ullman. The Theory of Parsing, Translation, and Compiling.

Volumn 1: Parsing. Prentice-Hall, Englewood Cliffs, N. J., 1972.

212

[15] Alfred V. Aho, Jefferey D. Ullman, and Ravi Sethe. Compilers: Principles, Techniques, and

Tools. 1986.

[16] Andrew Appel. Modern Compiler Implementation in C. 1998.

[17] Ole L. Madsen Bent B. Kristensen. Methods for computing LALR(k) lookahead. ACM

Transactions on Programming Languages and Systems, 3(1):60–82, January 1981.

[18] Boris Burshteyn. MUSKOX Algorithms. http://compilers.iecc.com/comparch/article/94-03-

067.

[19] Xin Chen. Hyacc 0.9 release. http://compilers.iecc.com/comparch/article/08-02-019.

[20] Xin Chen. Parser Generator Hyacc. http://hyacc.sourceforge.net.

[21] Kwang-Moo Choe. cs522 lecture notes - computation of firstk.

[22] Chris Clark. More yacc++ historical notes. http://compilers.iecc.com/comparch/article/00-02-

142.

[23] Chris Clark. Yacc++ historical notes. http://compilers.iecc.com/comparch/article/05-06-124.

[24] Frank L. DeRemer. Practical translators for LR(k) languages. PhD thesis, MIT, Cambridge,

1969.

[25] Frank L. DeRemer and Thomas Pennello. Efficient computation of LALR(1) look-ahead set.

TOPLAS, 4(4), October 1982.

[26] J. Grattage and Nottingham University T. Alterkirch. A compiler for a functional quantum

programming language, February 2005.

[27] A. G. Harford, V. P. Heuring, and M. G. Main. A new parsing method for non-LR(1) gram-

mars. Software Practice and Experience, 22(5):419 – 437, May 1992.

[28] M. L. Joliat. On the reduced matrix representation of LR(k) parser tables. Technical Report

Tech. Report CSRG-28, Computer Systems Resarch Group, University of Toronto, October

1973.

[29] Donald E. Knuth. On the translation of languages from left to right. Information and Control,

8(6):607–639, 1965.

213

[30] A. J. Korenjak. Efficient LR(1) processor construction. In Proceedings of the first annual

ACM symposium on Theory of computing, pages 191 – 200, Marina del Rey, California,

United States, 1969.

[31] A. J. Korenjak. A practical method for constructing LR(k) processors. Commun. ACM,

12:613–623, November 1969.

[32] P. M. Lewis and R. E. Stearns. Syntax-directed transduction. J. ACM, 15(3):465–488, 1968.

[33] M. S. Livstone, R. Weiss, and L. F. Landweber. Automated design and programming of a

microfluidic dna computer. Natural Computing, 5:1 – 13, 2006.

[34] Paul Mann. LRGen 8.0. http://compilers.iecc.com/comparch/article/07-09-045.

[35] Alessandro Paone Massimo Ancona. Table merging by compatible partitions for LR parsers is

NP-complete. Elektronische Informationsverarbeitung und Kybernetik, 30(3):123–134, 1994.

[36] Vittoria Gianuzzi Massimo Ancona. A new method for implementing LR(k) tables. Inf.

Process. Lett., 13(4/5).

[37] Vittoria Gianuzzi Massimo Ancona, Claudia Fassino. Optimization of LR(k) “Reduced

Parsers”. Inf. Process. Lett., 41(1):13–20, 1992.

[38] Vittoria Gianuzzi Massimo Ancona, Gabriella Dodero. Building collections of LR(k) items

with partial expansion of lookahead strings. SIGPLAN Notices, 17(5):24–28, 1982.

[39] Vittoria Gianuzzi M. Morgavi Massimo Ancona, Gabriella Dodero. Efficient construction of

LR(k) states and tables. ACM Trans. Program. Lang. Syst., 13(1):15–178, 1991.

[40] Holger Mauch. Automated Translation of Dynamic Programming Problems to JAVA Code and

their Solution via an Intermediate Petri Net Representation. PhD thesis, University of Hawaii,

March 2005.

[41] David Pager. University of Hawaii at Manoa 2006 Spring Course ICS611: Compiler Theory

and Construction.

[42] David Pager. A solution to an open problem by knuth. Information and Control, 17:462–473,

1970.

214

[43] David Pager. Some ideas for left-to-right parsing. Technical Report Tech. Report No. PE 84,

University of Hawaii, Information Sciences Program, October 1970.

[44] David Pager. On the incremental approach to left-to-right parsing. Technical Report Tech.

Report No. PE 238, University of Hawaii, Information Sciences Program, January 1972.

[45] David Pager. The lane tracing algorithm for constructing LR(k) parsers. In Proceedings of

the fifth annual ACM symposium on Theory of computing, pages 172 – 181, Austin, Texas,

United States, 1973.

[46] David Pager. Eliminating unit productions from LR parsers. Acta Informatics, 9:31 – 59,

1977.

[47] David Pager. The lane-tracing algorithm for constructing LR(k) parsers and ways of enhancing

its efficiency. Information Sciences, 12:19–42, 1977.

[48] David Pager. A practical general method for constructing LR(k) parsers. Acta Informatica,

7:249 – 268, 1977.

[49] David Pager. Evaluating Terminal Heads Of Length K. Technical Report No. ICS2009-06-

03, University of Hawaii, Information and Computer Sciences Department, November 2008.

http://www.ics.hawaii.edu/research/tech-reports/terminals.pdf/view.

[50] David Pager. The Lane Table Method Of Constructing LR(1) Parsers. Technical Report No.

ICS2009-06-02, University of Hawaii, Information and Computer Sciences Department, May

2008. http://www.ics.hawaii.edu/research/tech-reports/LaneTableMethod.pdf/view.

[51] David Pager. Resolving LR Type Conflicts at Translation or Compile Time. Technical Re-

port No. ICS2009-06-01, University of Hawaii, Information and Computer Sciences Depart-

ment, 2009. http://www.ics.hawaii.edu/research/tech-reports/Real time evaluation of LR con-

texts.pdf/view.

[52] Terence Parr. Obtaining practical variants of LL(k) and LR(k) for k> 1 by splitting the atomic

k-tuple. PhD thesis, Purdue University, August 1993.

[53] Francois Pottier and Yann Regis-Gianas. Parser Generator Menhir.

http://cristal.inria.fr/∼fpottier/menhir/.

215

[54] Jan Rekers. Parser Generation for Interactive Environments. PhD thesis, University of Ams-

terdam, 1992.

[55] D. J. Rosenkrantz and R. E. Stearns. Properties of deterministic top-down grammars.

Information and Control, 17(3):226–356, 1970.

[56] Peter Selinger. A brief survey of quantum programming languages.

http://www.mscs.dal.ca/ selinger/papers/flops04.ps, 2004.

[57] David Spector. Full LR(1) parser generation. ACM SIGPLAN Notices, pages 58 – 66, 1981.

[58] David Spector. Efficient full LR(1) parser generation. ACM SIGPLAN Notices, 23(12):143–

150, 1988.

[59] Masaru Tomita. Efficient Parsing for Natural Language. Kluwer Academic Publishers, Dor-

drecht, 1986.

[60] David Tribble. YACC/M, Yet Another Compiler-Compiler, An LR(1) Parser Generator for

Java. http://david.tribble.com/yaccm.html.

[61] David Tribble. The Honalee LR(k) algorithm. http://david.tribble.com/text/honalee.html,

2006.

[62] Lin Wang, Xiao-bo Yue, and Ying-chun Kuang. The research of grammar scanner based on

petri net model. Journal of Changsha Communications University, 21(1), March 2005.

[63] Charles Wetherell and A. Shannon. LR automatic parser generator and LR(1) parser. Technical

Report UCRL-82926 Preprint, July 1979.

[64] Ya-qin Zhao and Xian-zhong Zhou. Generalized LR syntactic analytic algorithm based on

neural network. Computer Applications, 2005(6), June 2005.

216

